Generation of induced pluripotent stem cells from domestic goats

SUMMARY The creation of genetically modified goats provides a powerful approach for improving animal health, enhancing production traits, animal pharming, and for ensuring food safety all of which are high‐priority goals for animal agriculture. The availability of goat embryonic stem cells (ESCs) th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular reproduction and development 2015-09, Vol.82 (9), p.709-721
Hauptverfasser: Sandmaier, Shelley E. S., Nandal, Anjali, Powell, Anne, Garrett, Wesley, Blomberg, Leann, Donovan, David M., Talbot, Neil, Telugu, Bhanu P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:SUMMARY The creation of genetically modified goats provides a powerful approach for improving animal health, enhancing production traits, animal pharming, and for ensuring food safety all of which are high‐priority goals for animal agriculture. The availability of goat embryonic stem cells (ESCs) that are characteristically immortal in culture would be of enormous benefit for developing genetically modified animals. As an alternative to long‐sought goat ESCs, we generated induced pluripotent stem cells (iPSC) by forced expression of bovine POU5F1, SOX2, MYC, KLF4, LIN‐28, and NANOG reprogramming factors in combination with a MIR302/367 cluster, delivered by lentiviral vectors. In order to minimize integrations, the reprogramming factor coding sequences were assembled with porcine teschovirus‐1 2A (P2A) self‐cleaving peptides that allowed for tri‐cistronic expression from each vector. The lentiviral‐transduced cells were cultured on irradiated mouse feeder cells in a semi‐defined, serum‐free medium containing fibroblast growth factor (FGF) and/or leukemia inhibitory factor (LIF). The resulting goat iPSC exhibit cell and colony morphology typical of human and mouse ESCs—that is, well‐defined borders, a high nuclear‐to‐cytoplasmic ratio, a short cell‐cycle interval, alkaline phosphatase expression, and the ability to generate teratomas in vivo. Additionally, these goat iPSC demonstrated the ability to differentiate into directed lineages in vitro. These results constitute the first steps in establishing integration and footprint‐free iPSC from ruminants. Mol. Reprod. Dev. 82: 709–721, 2015. © 2015 Wiley Periodicals, Inc.
ISSN:1040-452X
1098-2795
DOI:10.1002/mrd.22512