A p53-bound enhancer region controls a long intergenic noncoding RNA required for p53 stress response

Genome-wide chromatin studies identified the tumor suppressor p53 as both a promoter and an enhancer-binding transcription factor. As an enhancer factor, p53 can induce local production of enhancer RNAs, as well as transcriptional activation of distal neighboring genes. Beyond the regulation of prot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2016-08, Vol.35 (33), p.4399-4406
Hauptverfasser: Melo, C A, Léveillé, N, Rooijers, K, Wijchers, P J, Geeven, G, Tal, A, Melo, S A, de Laat, W, Agami, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Genome-wide chromatin studies identified the tumor suppressor p53 as both a promoter and an enhancer-binding transcription factor. As an enhancer factor, p53 can induce local production of enhancer RNAs, as well as transcriptional activation of distal neighboring genes. Beyond the regulation of protein-coding genes, p53 has the capacity to regulate long intergenic noncoding RNA molecules (lincRNAs); however, their importance to the p53 tumor suppressive function remains poorly characterized. Here, we identified and characterized a novel p53-bound intronic enhancer that controls the expression of its host, the lincRNA00475 ( linc-475 ). We demonstrate the requirement of linc-475 for the proper induction of a p53-dependent cell cycle inhibitory response. We further confirm the functional importance of linc-475 in the maintenance of CDKN1A/p21 levels, a cell cycle inhibitor and a major p53 target gene, following p53 activation. Interestingly, loss of linc-475 reduced the binding of both p53 and RNA polymerase II (RNAPII) to the promoter of p21, attenuating its transcription rate following p53 activation. Altogether, our data suggest a direct role of p53-bound enhancer domains in the activation of lincRNAs required for an efficient p53 transcriptional response.
ISSN:0950-9232
1476-5594
DOI:10.1038/onc.2015.502