Postischemic microvasculopathy and endothelial progenitor cell-based therapy in ischemic AKI: update and perspectives

Acute kidney injury (AKI) dramatically increases mortality of hospitalized patients. Incidences have been increased in recent years. The most frequent cause is transient renal hypoperfusion or ischemia which induces significant tubular cell dysfunction/damage. In addition, two further events take pl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Renal physiology 2016-08, Vol.311 (2), p.F382-F394
Hauptverfasser: Patschan, D, Kribben, A, Müller, G A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Acute kidney injury (AKI) dramatically increases mortality of hospitalized patients. Incidences have been increased in recent years. The most frequent cause is transient renal hypoperfusion or ischemia which induces significant tubular cell dysfunction/damage. In addition, two further events take place: interstitial inflammation and microvasculopathy (MV). The latter evolves within minutes to hours postischemia and may result in permanent deterioration of the peritubular capillary network, ultimately increasing the risk for chronic kidney disease (CKD) in the long term. In recent years, our understanding of the molecular/cellular processes responsible for acute and sustained microvasculopathy has increasingly been expanded. The methodical approaches for visualizing impaired peritubular blood flow and increased vascular permeability have been optimized, even allowing the depiction of tissue abnormalities in a three-dimensional manner. In addition, endothelial dysfunction, a hallmark of MV, has increasingly been recognized as an inductor of both vascular malfunction and interstitial inflammation. In this regard, so-called regulated necrosis of the endothelium could potentially play a role in postischemic inflammation. Endothelial progenitor cells (EPCs), represented by at least two major subpopulations, have been shown to promote vascular repair in experimental AKI, not only in the short but also in the long term. The discussion about the true biology of the cells continues. It has been proposed that early EPCs are most likely myelomonocytic in nature, and thus they may simply be termed proangiogenic cells (PACs). Nevertheless, they reliably protect certain types of tissues/organs from ischemia-induced damage, mostly by modulating the perivascular microenvironment in an indirect manner. The aim of the present review is to summarize the current knowledge on postischemic MV and EPC-mediated renal repair.
ISSN:1931-857X
1522-1466
DOI:10.1152/ajprenal.00232.2016