Quantitative Holocene climatic reconstruction from Arctic Russia

Vegetation changes reflected in fossil pollen spectra are a primary source of information about climate fluctuations in the past. A statistical-information (transfer function) method based on the correlation of recent pollen spectra with modern climate conditions has been used to reconstruct Holocen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of paleolimnology 2000-06, Vol.24 (1), p.81-91
Hauptverfasser: Andreev, Aa, Klimanov, Va
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vegetation changes reflected in fossil pollen spectra are a primary source of information about climate fluctuations in the past. A statistical-information (transfer function) method based on the correlation of recent pollen spectra with modern climate conditions has been used to reconstruct Holocene climatic changes from fossil pollen. Climatic variables used for the reconstructions are the mean annual, January, July temperatures and annual precipitation. Peat sections with pollen and ^sup 14^C data from the Arctic Russia were used for the reconstructions. The reconstructed climate fluctuations are similar to the climate changes obtained from many sites in the former USSR. A clear signal for Younger Dryas cooling, 11,000-10,000 yr BP and early Preboreal warming is apparent. The early Preboreal (10,000-9000 yr BP) was the warmest time for sites from modern coastal and island areas. The warm interval occurred in the Boreal period, about 8500 yr BP. According to the reconstructions the warmest time for non-coastal areas was the last half of Atlantic period, 6000-4500 yr BP. Other warm intervals were reconstructed about 3500 and 1000 yr BP. Reconstructions show that warming periods are primarily defined as times of increased summer temperatures, and cooling periods as time of decreased winter temperatures. The precipitation followed the temperatures: during the warming periods precipitation increased and during the cooling periods it decreased. Precipitation maximum, about 100 mm higher than present, are reconstructed for the warmest interval, 6000-4500 yr BP at all sites.[PUBLICATION ABSTRACT]
ISSN:0921-2728
1573-0417
DOI:10.1023/A:1008121917521