Late Quaternary Glaciation and Postglacial Stratigraphy of the Northern Pacific Margin of Canada
Areas of southeastern Alaska and the Queen Charlotte Islands of the northwestern Pacific coast of North America were considered to be ice free during the late Wisconsinan glaciation and glacial refugia existed. However, a glacier extended from mainland North America to the shelfbreak in Dixon Entran...
Gespeichert in:
Veröffentlicht in: | Quaternary research 1999-03, Vol.51 (2), p.113-123 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Areas of southeastern Alaska and the Queen Charlotte Islands of the northwestern Pacific coast of North America were considered to be ice free during the late Wisconsinan glaciation and glacial refugia existed. However, a glacier extended from mainland North America to the shelfbreak in Dixon Entrance separating Alaska and the Queen Charlotte Islands. Glacial retreat to the east began sometime after 15,000 to 16,00014C yr B.P. and ice had completely left Dixon Entrance by 13,500 to 13,00014C yr B.P. A rapid sea-level regression occurred soon after deglaciation began, due to isostatic rebound, with relative sea level falling to approximately 150 m below present in central Dixon Entrance, decreasing the size of the inlet by about 30 percent by 12,40014C yr B.P. The late Quaternary glacial and postglacial stratigraphic sequence is more than 100 m thick overlying older Pleistocene sediments and Tertiary bedrock. A late Wisconsinan diamicton is overlain by glaciomarine muds formed between approximately 14,400 and 13,00014C yr B.P. Contemporaneous with the deposition of the glaciomarine muds an extensive outwash deposit formed off the northern coast of the Queen Charlotte Islands to a present depth of 150 m. During the sea-level lowstand and subsequent transgression, a reworked sand unit was deposited over much of the seafloor to depths greater than 450 m. The unit is exposed at the seafloor over much of the region, suggesting that seabed hydrodynamic energy levels were high after 13,00014C yr B.P. and remain so today. |
---|---|
ISSN: | 0033-5894 1096-0287 |
DOI: | 10.1006/qres.1998.2021 |