Empirical wind model for the upper, middle and lower atmosphere

The HWM90 thermospheric wind model has been revised in the lower thermosphere and extended into the mesosphere, stratosphere and lower atmosphere to provide a single analytic model for calculating zonal and meridional wind profiles representative of the climatological average for various geophysical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of atmospheric and terrestrial physics 1996-09, Vol.58 (13), p.1421-1447
Hauptverfasser: Hedin, A.E., Fleming, E.L., Manson, A.H., Schmidlin, F.J., Avery, S.K., Clark, R.R., Franke, S.J., Fraser, G.J., Tsuda, T., Vial, F., Vincent, R.A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The HWM90 thermospheric wind model has been revised in the lower thermosphere and extended into the mesosphere, stratosphere and lower atmosphere to provide a single analytic model for calculating zonal and meridional wind profiles representative of the climatological average for various geophysical conditions. Gradient winds from CIRA-86 plus rocket soundings, incoherent scatter radar, MF radar, and meteor radar provide the data base and are supplemented by previous data driven model summaries. Low-order spherical harmonics and Fourier series are used to describe the major variations throughout the atmosphere including latitude, annual, semiannual, local time (tides), and longitude (stationary wave 1), with a cubic spline interpolation in altitude. The model represents a smoothed compromise between the original data sources. Although agreement between various data sources is generally good, some systematic differences are noted, particularly near the mesopause. Overall root mean square differences between dar.a and model values are on the order of 15 m/s in the mesosphere and 10 m/s in the stratosphere for zonal winds, and 10 m/s and 5 m/s respectively for meridional winds.
ISSN:0021-9169
DOI:10.1016/0021-9169(95)00122-0