RNA Export Mediated by Tap Involves NXT1-dependent Interactions with the Nuclear Pore Complex

Nuclear export of ribonucleoprotein complexes requires cis-acting signals and recognition by receptors that mediate translocation through the nuclear pore complex. Translocation is likely to involve a series of physical interactions between the ribonucleoprotein complex and nucleoporins within the n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2001-11, Vol.276 (48), p.44953-44962
Hauptverfasser: Lévesque, L, Guzik, B, Guan, T, Coyle, J, Black, B E, Rekosh, D, Hammarskjöld, M L, Paschal, B M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nuclear export of ribonucleoprotein complexes requires cis-acting signals and recognition by receptors that mediate translocation through the nuclear pore complex. Translocation is likely to involve a series of physical interactions between the ribonucleoprotein complex and nucleoporins within the nuclear pore complex. Here, we have characterized the function of NXT1 in the context of the Tap-dependent RNA export pathway. Tap has been implicated in the nuclear export of RNA transcripts derived from Mason-Pfizer monkey virus that contain the constitutive transport element. We demonstrate that NXT1 stimulates binding of a Tap-RNA complex to nucleoporins in vitro , and we provide mutational analysis that shows these interactions are necessary for nuclear export of an intron-containing viral mRNA in vivo . Tap contains separate domains for binding to nucleoporins and NXT1, both of which are critical for its export function. RNA export is mediated by a heterodimer of Tap and NXT1, and the function of NXT1 on this pathway is to regulate the affinity of the Tap-RNA complex for nucleoporins within the nuclear pore complex. We propose that NXT1-dependent binding of the Tap-RNA complex to the nucleoporin p62, which we have reconstituted in vitro using recombinant proteins, represents a single step of the translocation reaction.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M106558200