Dopamine as a Novel Electrolyte Additive for High-Voltage Lithium-Ion Batteries
Dopamine, which can be electrochemically oxidized to polydopamine on cathode surface, was introduced as an electrolyte additive for high-voltage lithium-ion batteries (LIBs). The addition of 0.1 wt % dopamine to the electrolyte led to the formation of a polydopamine-containing layer on the cathode,...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2016-08, Vol.8 (33), p.21366-21372 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dopamine, which can be electrochemically oxidized to polydopamine on cathode surface, was introduced as an electrolyte additive for high-voltage lithium-ion batteries (LIBs). The addition of 0.1 wt % dopamine to the electrolyte led to the formation of a polydopamine-containing layer on the cathode, thereby resulting in suppression of the oxidative decomposition of the electrolyte during high-voltage operation (up to 4.5 V) of a LiNi1/3Co1/3Mn1/3O2/artificial graphite cell. The addition of dopamine to the electrolyte improved the capacity retention of the cell from 136 to 147 mAh g–1 after 100 cycles at a rate of 1 C and a cutoff voltage of 4.5 V, while the cycle performance and rate capability with a cutoff voltage of 4.3 V were comparable to those of the cell without dopamine. Further evidence of the positive impact of dopamine on high-voltage LIBs was the lower DC-IRs and AC impedances, as well as the retention of the cathode morphology even after operation at 4.5 V. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.6b06074 |