Hairy cellulose nanocrystalloids: a novel class of nanocellulose

Nanomaterials have secured such a promising role in today's life that imagining the modern world without them is almost impossible. A large fraction of nanomaterials is synthesized from environmentally-dangerous elements such as heavy metals, which have posed serious side-effects to ecosystems....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2016-08, Vol.8 (33), p.1511-15114
Hauptverfasser: van de Ven, Theo G. M, Sheikhi, Amir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanomaterials have secured such a promising role in today's life that imagining the modern world without them is almost impossible. A large fraction of nanomaterials is synthesized from environmentally-dangerous elements such as heavy metals, which have posed serious side-effects to ecosystems. Despite numerous advantages of synthetic nanomaterials, issues such as renewability, sustainability, biocompatibility, and cost efficiency have drawn significant attention towards natural products such as cellulose-based nanomaterials. Within the past decade, nanocelluloses, most remarkably nanocrystalline cellulose (NCC) and nanofibrillated cellulose (NFC), have successfully been used for a wide spectrum of applications spanning from nanocomposites, packaging, and mechanical and rheological property modifications, to chemical catalysis and organic templating. Yet, there has been little effort to introduce fundamentally new polysaccharide-based nanomaterials. We have been able to develop the first kind of cellulose-based nanoparticles bearing both crystalline and amorphous regions. These nanoparticles comprise a crystalline body, similar to conventional NCC, but with polymer chains protruding from both ends; therefore, these particles are called hairy cellulose nanocrystalloids (HCNC). In this article, we touch on the philosophy of HCNC synthesis, the striking superiority over existing nanocelluloses, and applications of this novel class of nanocelluloses. We hope that the emergence of hairy cellulose nanocrystalloids extends the frontiers of sustainable, green nanotechnology. Cellulose nanofibrils (left), the main building blocks of wood fibers, are chemically treated to fall apart from the amorphous regions and yield hairy nanocrystalline celluloses and modified cellulose biopolymers (right).
ISSN:2040-3364
2040-3372
DOI:10.1039/c6nr01570k