Presynchronization of lactating dairy cows with PGF2α and GnRH simultaneously, 7 days before Ovsynch have similar outcomes compared to G6G

The overarching objective of this study was to develop an alternative strategy for first and greater services that will improve fertility in lactating dairy cows for dairy operations limited by labor or other logistical constraints that make it difficult to use Presynch-11, G6G, or Double-Ovsynch. O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theriogenology 2016-10, Vol.86 (6), p.1607-1614
Hauptverfasser: Yousuf, Muhammad Rizwan, Martins, João Paulo N., Ahmad, Nasim, Nobis, Kerry, Pursley, J. Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The overarching objective of this study was to develop an alternative strategy for first and greater services that will improve fertility in lactating dairy cows for dairy operations limited by labor or other logistical constraints that make it difficult to use Presynch-11, G6G, or Double-Ovsynch. Our overall hypothesis was that simplification of a Presynch program through the combination of PGF2α and GnRH on the same day (PG + G), 7 days before the first GnRH of Ovsynch, would allow for similar ovulation and luteolysis rate and pregnancies per AI (P/AI) compared with G6G. Lactating dairy cows 58 to 64 days in milk (first service; n = 114), and cows diagnosed not pregnant 39 days after previous AI (second + service; n = 122) were blocked by parity and service and randomly assigned to control or PG + G. Control cows received G6G (n = 116) that consisted of PGF2α, 2-day GnRH, 6-day GnRH, 7-day PGF2α, 56-hour GnRH, and 16-hour AI. Treated cows (PG + G; n = 121) received PGF2α and GnRH, 7-day GnRH, 7-day PGF2α, 56-hour GnRH, and 16-hour AI. All cows received a second PGF2α 24 hours after the PGF2α of Ovsynch. First service cows received AI between 76 and 82 days in milk and second + service received AI 57 days after previous AI. Pregnancies/AI (n = 230) were similar in controls compared with treated cows on Day 35 (57 vs. 50%; P = 0.27) and Day 49 (54 vs. 47%; P = 0.33), respectively. Percent of cows ovulating after GnRH of the presynchronization was greater (P = 0.002) for controls vs. treated (80 vs. 58%); however, ovulation after first GnRH of Ovsynch was similar (67 vs. 68%; P = 0.86). Serum concentrations of progesterone were similar (P = 0.78) at the time of first GnRH of Ovsynch for control and treated cows (2.22 vs. 2.14 ng/mL). However, serum progesterone at the time of PGF2α of Ovsynch was greater (P = 0.002) for control cows compared with treated cows (5.75 vs. 4.64 ng/mL). In summary, administering both PGF2α and GnRH on the same day, 7 days before the start of Ovsynch, appears to be a simple alternative that results in acceptable P/AI but potentially less progesterone during the growth of the ovulatory follicle.
ISSN:0093-691X
1879-3231
DOI:10.1016/j.theriogenology.2016.05.021