Noninvasive detection of activating estrogen receptor 1 (ESR1) mutations in estrogen receptor-positive metastatic breast cancer

Activating mutations in the estrogen receptor 1 (ESR1) gene are acquired on treatment and can drive resistance to endocrine therapy. Because of the spatial and temporal limitations of needle core biopsies, our goal was to develop a highly sensitive, less invasive method of detecting activating ESR1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical chemistry (Baltimore, Md.) Md.), 2015-07, Vol.61 (7), p.974-982
Hauptverfasser: Guttery, David S, Page, Karen, Hills, Allison, Woodley, Laura, Marchese, Stephanie D, Rghebi, Basma, Hastings, Robert K, Luo, Jinli, Pringle, J Howard, Stebbing, Justin, Coombes, R Charles, Ali, Simak, Shaw, Jacqueline A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Activating mutations in the estrogen receptor 1 (ESR1) gene are acquired on treatment and can drive resistance to endocrine therapy. Because of the spatial and temporal limitations of needle core biopsies, our goal was to develop a highly sensitive, less invasive method of detecting activating ESR1 mutations via circulating cell-free DNA (cfDNA) and tumor cells as a "liquid biopsy." We developed a targeted 23-amplicon next-generation sequencing (NGS) panel for detection of hot-spot mutations in ESR1, phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA), tumor protein p53 (TP53), fibroblast growth factor receptor 1 (FGFR1), and fibroblast growth factor receptor 2 (FGFR2) in 48 patients with estrogen receptor-α-positive metastatic breast cancer who were receiving systemic therapy. Selected mutations were validated using droplet digital PCR (ddPCR). Nine baseline cfDNA samples had an ESR1 mutation. NGS detected 3 activating mutations in ESR1, and 3 hot-spot mutations in PIK3CA, and 3 in TP53 in baseline cfDNA, and the ESR1 p.D538G mutation in 1 matched circulating tumor cell sample. ddPCR analysis was more sensitive than NGS and identified 6 additional baseline cfDNA samples with the ESR1 p.D538G mutation at a frequency of
ISSN:0009-9147
1530-8561
DOI:10.1373/clinchem.2015.238717