Structural modulation of gut microbiota by chondroitin sulfate and its oligosaccharide

Chondroitin sulfate (CS) as a dietary supplement and a symptomatic slow acting (SYSA) drug has been used for years. Recently, CS has been demonstrated to be readily degraded and fermented in vitro by specific human gut microbes, hinting that dietary CS may pose a potential effect on gut microbiota c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2016-08, Vol.89, p.489-498
Hauptverfasser: Shang, Qingsen, Shi, Jingjing, Song, Guanrui, Zhang, Meifang, Cai, Chao, Hao, Jiejie, Li, Guoyun, Yu, Guangli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chondroitin sulfate (CS) as a dietary supplement and a symptomatic slow acting (SYSA) drug has been used for years. Recently, CS has been demonstrated to be readily degraded and fermented in vitro by specific human gut microbes, hinting that dietary CS may pose a potential effect on gut microbiota composition in vivo. However, until now, little information is available on modulations of gut microbiota by CS. In the present study, modulations of gut microbiota in Kunming mice by CS and its oligosaccharide (CSO) were investigated by high-throughput sequencing. As evidenced by Heatmap and principal component analysis (PCA), the female microbiota were more vulnerable than the male microbiota to CS and CSO treatment. Besides, it is of interest to found that CS and CSO had differing effects on the abundance of Bacteroidales S24-7, Bacteroides, Helicobacter, Odoribacter, Prevotellaceae and Lactobacillus in male mice versus female mice. Collectively, we demonstrated a sex-dependent effect on gut microbiota of CS and CSO. In addition, since gut microbiota exerts a major effect on host physiology, our study highlighted that certain beneficial effects of CS may be associated with modulations of gut microbiota, which merits further investigation.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2016.04.091