Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau

Understanding vegetation responses to climate change on the Tibetan Plateau (TP) helps in elucidating the land–atmosphere energy exchange, which affects air mass movement over and around the TP. Although the TP is one of the world's most sensitive regions in terms of climatic warming, little is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology 2016-09, Vol.22 (9), p.3057-3066
Hauptverfasser: Shen, Miaogen, Piao, Shilong, Chen, Xiaoqiu, An, Shuai, Fu, Yongshuo H., Wang, Shiping, Cong, Nan, Janssens, Ivan A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding vegetation responses to climate change on the Tibetan Plateau (TP) helps in elucidating the land–atmosphere energy exchange, which affects air mass movement over and around the TP. Although the TP is one of the world's most sensitive regions in terms of climatic warming, little is known about how the vegetation responds. Here, we focus on how spring phenology and summertime greenness respond to the asymmetric warming, that is, stronger warming during nighttime than during daytime. Using both in situ and satellite observations, we found that vegetation green‐up date showed a stronger negative partial correlation with daily minimum temperature (Tmin) than with maximum temperature (Tmax) before the growing season (‘preseason’ henceforth). Summer vegetation greenness was strongly positively correlated with summer Tmin, but negatively with Tmax. A 1‐K increase in preseason Tmin advanced green‐up date by 4 days (P 
ISSN:1354-1013
1365-2486
DOI:10.1111/gcb.13301