Physicochemical characterisation and antimicrobial phototoxicity of an anionic porphyrin in natural deep eutectic solvents
[Display omitted] Natural deep eutectic solvents (NADES) are a newly discovered group of eutectics which has shown promise as a solvent in antimicrobial photodynamic therapy (aPDT). The purpose of this study was to investigate preparations of an anionic porphyrin, meso-tetra-(4-carboxyphenyl)-porphi...
Gespeichert in:
Veröffentlicht in: | European journal of pharmaceutics and biopharmaceutics 2016-08, Vol.105, p.75-84 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Natural deep eutectic solvents (NADES) are a newly discovered group of eutectics which has shown promise as a solvent in antimicrobial photodynamic therapy (aPDT). The purpose of this study was to investigate preparations of an anionic porphyrin, meso-tetra-(4-carboxyphenyl)-porphine (TCPP), solubilised in NADES, with regard to their physicochemical and antibacterial properties. The NADES CS (pH∼0), ChX (pH∼4) and MFG (pH∼1) solubilised TCPP with absorption maximum ∼443nm and emission maximum ∼678nm, indicating formation of the TCPP dication. Dilution of TCPP-NADES>1:1 (water) reduced the physical stability of the preparations. The photostability half-lives of TCPP in methanol, MFG, and CS were ∼9h, 6.9h and 3.2h, respectively. Nanomolar concentrations of TCPP solubilised in diluted MFG combined with ⩽27J/cm2 blue light increased Gram-positive and Gram-negative bacterial phototoxicity, >99.98% and 96% bacterial reduction, respectively, compared to TCPP in PBS/ethanol under equivalent treatment conditions. TCPP solubilised in diluted CS was toxic to bacteria both in the absence (36–72% reduction) and presence of light. TCPP in CS, and in the CS component citric acid, induced a TCPP-concentration dependent increase in Gram-negative phototoxicity relative to controls, which was most pronounced for TCPP-CS. The mechanism behind the increased toxicity is unknown. |
---|---|
ISSN: | 0939-6411 1873-3441 |
DOI: | 10.1016/j.ejpb.2016.06.001 |