Monte Carlo Maximum Likelihood Estimation for Generalized Long-Memory Time Series Models

An exact maximum likelihood method is developed for the estimation of parameters in a non-Gaussian nonlinear density function that depends on a latent Gaussian dynamic process with long-memory properties. Our method relies on the method of importance sampling and on a linear Gaussian approximating m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometric reviews 2016-04, Vol.35 (4), p.659-687
Hauptverfasser: Mesters, G., Koopman, S. J., Ooms, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An exact maximum likelihood method is developed for the estimation of parameters in a non-Gaussian nonlinear density function that depends on a latent Gaussian dynamic process with long-memory properties. Our method relies on the method of importance sampling and on a linear Gaussian approximating model from which the latent process can be simulated. Given the presence of a latent long-memory process, we require a modification of the importance sampling technique. In particular, the long-memory process needs to be approximated by a finite dynamic linear process. Two possible approximations are discussed and are compared with each other. We show that an autoregression obtained from minimizing mean squared prediction errors leads to an effective and feasible method. In our empirical study, we analyze ten daily log-return series from the S&P 500 stock index by univariate and multivariate long-memory stochastic volatility models. We compare the in-sample and out-of-sample performance of a number of models within the class of long-memory stochastic volatility models.
ISSN:0747-4938
1532-4168
DOI:10.1080/07474938.2015.1031014