The DNA-binding Domain of Yeast Heat Shock Transcription Factor Independently Regulates Both the N- and C-terminal Activation Domains

The expression of heat shock proteins in response to cellular stresses is dependent on the activity of the heat shock transcription factor (HSF). In yeast, HSF is constitutively bound to DNA; however, the mitigation of negative regulation in response to stress dramatically increases transcriptional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2001-10, Vol.276 (43), p.40254-40262
Hauptverfasser: Bulman, Amanda L., Hubl, Susan T., Nelson, Hillary C.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The expression of heat shock proteins in response to cellular stresses is dependent on the activity of the heat shock transcription factor (HSF). In yeast, HSF is constitutively bound to DNA; however, the mitigation of negative regulation in response to stress dramatically increases transcriptional activity. Through alanine-scanning mutagenesis of the surface residues of the DNA-binding domain, we have identified a large number of mutants with increased transcriptional activity. Six of the strongest mutations were selected for detailed study. Our studies suggest that the DNA-binding domain is involved in the negative regulation of both the N-terminal and C-terminal activation domains of HSF. These mutations do not significantly affect DNA binding. Circular dichroism analysis suggests that a subset of the mutants may have altered secondary structure, whereas a different subset has decreased thermal stability. Our findings suggest that the regulation of HSF transcriptional activity (under both constitutive and stressed conditions) may be partially dependent on the local topology of the DNA-binding domain. In addition, the DNA-binding domain may mediate key interactions with ancillary factors and/or other intramolecular regulatory regions in order to modulate the complex regulation of HSF's transcriptional activity.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M106301200