Interannual variability of the upper tropospheric circulation
Seventeen years of sea level pressure (SLP), 200-hPa zonal wind and 500-hPa geopotential height data were used to investigate the boreal winter and summer interannual (IA) circulation patterns. The IA patterns for these variables and for their zonally asymmetric (ZA) part were determined by performi...
Gespeichert in:
Veröffentlicht in: | Meteorology and atmospheric physics 1998, Vol.68 (3-4), p.143-150 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Seventeen years of sea level pressure (SLP), 200-hPa zonal wind and 500-hPa geopotential height data were used to investigate the boreal winter and summer interannual (IA) circulation patterns. The IA patterns for these variables and for their zonally asymmetric (ZA) part were determined by performing empirical orthogonal function (EOF) analyses on the SLP and on ZA SLP. The corresponding patterns for the other variables were obtained by correlating their time series with the amplitude time series of these EOF analyses. For both seasons, the SLP and ZA SLP show a zonal wavenumber one pattern extending from the tropics into the winter hemisphere extratropics, which is consistent with the circulation anomalies related to the El Nino/Southern Oscillation (ENSO) cycles. The zonal wavenumber one pattern observed for the boreal winter describes the SLP and ZA SLP variations related to the mature state of the El Nino and La Nina episodes, and that for the summer, the SLP and ZA SLP variations associated with the initial or decay stages of these phenomena. The 200-hPa zonal wind and 500-hPa geopotential height patterns exhibit strong seasonal dependence, and the ZA parts of these two variables show even more pronounced seasonal differences. These results indicate that the seasonal cycle of the atmospheric circulation, in particular at the upper tropospheric levels, might play an important role in extending the IA wavetrain-like structure into the subtropics as noted for the 200-hPa zonal wind and its ZA part in the Pacific/Americas sector. This wavetrain-like structure shows its Southern Hemisphere (SH) and Northern Hemisphere (NH) branches for the boreal winter, and only its SH branch, for the boreal summer. Thus, the effects of the seasonal cycle of the atmospheric circulation on the IA patterns seem to be stronger for the NH. |
---|---|
ISSN: | 0177-7971 1436-5065 |
DOI: | 10.1007/BF01030206 |