Experimental forecasts of all-India monthly and summer monsoon rainfall using neural network
The cognitive network for rainfall forecast was developed as an alternative forecast tool for rainfall pattern. Based on the hindcast skill and success in experimental forecast for last four years of all-India summer monsoon rainfall (ISMR), we record in the present study our cognitive forecast of I...
Gespeichert in:
Veröffentlicht in: | Current science (Bangalore) 1999-06, Vol.76 (11), p.1481-1483 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1483 |
---|---|
container_issue | 11 |
container_start_page | 1481 |
container_title | Current science (Bangalore) |
container_volume | 76 |
creator | Goswami, P. Crasta, Gration Sreekanth, V. Shobha, K. V. Naik, M. Kavitha |
description | The cognitive network for rainfall forecast was developed as an alternative forecast tool for rainfall pattern. Based on the hindcast skill and success in experimental forecast for last four years of all-India summer monsoon rainfall (ISMR), we record in the present study our cognitive forecast of ISMR for the years 1999 and 2000. While these forecasts are purely experimental, they provide an objective evaluation of the method. In addition, the present study also reports an enhanced scope of cognitive forecast of rainfall pattern, by providing experimental forecasts of all-India monthly mean precipitation for the years 1999 and 2000. These monthly forecasts also provide more stringent evaluation of the method. |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_18097030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24101422</jstor_id><sourcerecordid>24101422</sourcerecordid><originalsourceid>FETCH-LOGICAL-j237t-52bf24e3d4a6ef9890a7d14e3f42c504d518343680388556abeb1210caef6b6f3</originalsourceid><addsrcrecordid>eNqFkE1LxDAURbNQcBz9CUJW7govH23TpQyjDgy40Z1Q0vZFW9NkTFJ0_r2Rce_qwrmHu7hnZAXAWCFUwy7IZYwTABccmhV53X4fMIwzuqQtNT5gr2OK1BuqrS12bhg1nb1L7_ZItRtoXOYZwy-K3jsa9OhMNukSR_dGHS4h7zhMXz58XJHz3EW8_ss1ebnfPm8ei_3Tw25zty8mLupUlLwzXKIYpK7QNKoBXQ8sAyN5X4IcSqaEFJUCoVRZVrrDjnEGvUZTdZURa3J72j0E_7lgTO08xh6t1Q79ElumoKlBwP9iLRRXtczizUmcYvKhPeSHdDi2XDJgknPxA4tPZ60</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17382874</pqid></control><display><type>article</type><title>Experimental forecasts of all-India monthly and summer monsoon rainfall using neural network</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Goswami, P. ; Crasta, Gration ; Sreekanth, V. ; Shobha, K. V. ; Naik, M. Kavitha</creator><creatorcontrib>Goswami, P. ; Crasta, Gration ; Sreekanth, V. ; Shobha, K. V. ; Naik, M. Kavitha</creatorcontrib><description>The cognitive network for rainfall forecast was developed as an alternative forecast tool for rainfall pattern. Based on the hindcast skill and success in experimental forecast for last four years of all-India summer monsoon rainfall (ISMR), we record in the present study our cognitive forecast of ISMR for the years 1999 and 2000. While these forecasts are purely experimental, they provide an objective evaluation of the method. In addition, the present study also reports an enhanced scope of cognitive forecast of rainfall pattern, by providing experimental forecasts of all-India monthly mean precipitation for the years 1999 and 2000. These monthly forecasts also provide more stringent evaluation of the method.</description><identifier>ISSN: 0011-3891</identifier><language>eng</language><publisher>Current Science Association</publisher><subject>Artificial neural networks ; Employment forecasting ; Forecasting models ; Forecasting standards ; India ; Long range weather forecasting ; Monsoons ; Observational research ; Rain ; RESEARCH COMMUNICATIONS ; Time series forecasting ; Weather forecasting</subject><ispartof>Current science (Bangalore), 1999-06, Vol.76 (11), p.1481-1483</ispartof><rights>Copyright ©1999 Current Science Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24101422$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24101422$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,57998,58231</link.rule.ids></links><search><creatorcontrib>Goswami, P.</creatorcontrib><creatorcontrib>Crasta, Gration</creatorcontrib><creatorcontrib>Sreekanth, V.</creatorcontrib><creatorcontrib>Shobha, K. V.</creatorcontrib><creatorcontrib>Naik, M. Kavitha</creatorcontrib><title>Experimental forecasts of all-India monthly and summer monsoon rainfall using neural network</title><title>Current science (Bangalore)</title><description>The cognitive network for rainfall forecast was developed as an alternative forecast tool for rainfall pattern. Based on the hindcast skill and success in experimental forecast for last four years of all-India summer monsoon rainfall (ISMR), we record in the present study our cognitive forecast of ISMR for the years 1999 and 2000. While these forecasts are purely experimental, they provide an objective evaluation of the method. In addition, the present study also reports an enhanced scope of cognitive forecast of rainfall pattern, by providing experimental forecasts of all-India monthly mean precipitation for the years 1999 and 2000. These monthly forecasts also provide more stringent evaluation of the method.</description><subject>Artificial neural networks</subject><subject>Employment forecasting</subject><subject>Forecasting models</subject><subject>Forecasting standards</subject><subject>India</subject><subject>Long range weather forecasting</subject><subject>Monsoons</subject><subject>Observational research</subject><subject>Rain</subject><subject>RESEARCH COMMUNICATIONS</subject><subject>Time series forecasting</subject><subject>Weather forecasting</subject><issn>0011-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAURbNQcBz9CUJW7govH23TpQyjDgy40Z1Q0vZFW9NkTFJ0_r2Rce_qwrmHu7hnZAXAWCFUwy7IZYwTABccmhV53X4fMIwzuqQtNT5gr2OK1BuqrS12bhg1nb1L7_ZItRtoXOYZwy-K3jsa9OhMNukSR_dGHS4h7zhMXz58XJHz3EW8_ss1ebnfPm8ei_3Tw25zty8mLupUlLwzXKIYpK7QNKoBXQ8sAyN5X4IcSqaEFJUCoVRZVrrDjnEGvUZTdZURa3J72j0E_7lgTO08xh6t1Q79ElumoKlBwP9iLRRXtczizUmcYvKhPeSHdDi2XDJgknPxA4tPZ60</recordid><startdate>19990610</startdate><enddate>19990610</enddate><creator>Goswami, P.</creator><creator>Crasta, Gration</creator><creator>Sreekanth, V.</creator><creator>Shobha, K. V.</creator><creator>Naik, M. Kavitha</creator><general>Current Science Association</general><scope>7UA</scope><scope>C1K</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>19990610</creationdate><title>Experimental forecasts of all-India monthly and summer monsoon rainfall using neural network</title><author>Goswami, P. ; Crasta, Gration ; Sreekanth, V. ; Shobha, K. V. ; Naik, M. Kavitha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j237t-52bf24e3d4a6ef9890a7d14e3f42c504d518343680388556abeb1210caef6b6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Artificial neural networks</topic><topic>Employment forecasting</topic><topic>Forecasting models</topic><topic>Forecasting standards</topic><topic>India</topic><topic>Long range weather forecasting</topic><topic>Monsoons</topic><topic>Observational research</topic><topic>Rain</topic><topic>RESEARCH COMMUNICATIONS</topic><topic>Time series forecasting</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goswami, P.</creatorcontrib><creatorcontrib>Crasta, Gration</creatorcontrib><creatorcontrib>Sreekanth, V.</creatorcontrib><creatorcontrib>Shobha, K. V.</creatorcontrib><creatorcontrib>Naik, M. Kavitha</creatorcontrib><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Current science (Bangalore)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goswami, P.</au><au>Crasta, Gration</au><au>Sreekanth, V.</au><au>Shobha, K. V.</au><au>Naik, M. Kavitha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental forecasts of all-India monthly and summer monsoon rainfall using neural network</atitle><jtitle>Current science (Bangalore)</jtitle><date>1999-06-10</date><risdate>1999</risdate><volume>76</volume><issue>11</issue><spage>1481</spage><epage>1483</epage><pages>1481-1483</pages><issn>0011-3891</issn><abstract>The cognitive network for rainfall forecast was developed as an alternative forecast tool for rainfall pattern. Based on the hindcast skill and success in experimental forecast for last four years of all-India summer monsoon rainfall (ISMR), we record in the present study our cognitive forecast of ISMR for the years 1999 and 2000. While these forecasts are purely experimental, they provide an objective evaluation of the method. In addition, the present study also reports an enhanced scope of cognitive forecast of rainfall pattern, by providing experimental forecasts of all-India monthly mean precipitation for the years 1999 and 2000. These monthly forecasts also provide more stringent evaluation of the method.</abstract><pub>Current Science Association</pub><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0011-3891 |
ispartof | Current science (Bangalore), 1999-06, Vol.76 (11), p.1481-1483 |
issn | 0011-3891 |
language | eng |
recordid | cdi_proquest_miscellaneous_18097030 |
source | Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals |
subjects | Artificial neural networks Employment forecasting Forecasting models Forecasting standards India Long range weather forecasting Monsoons Observational research Rain RESEARCH COMMUNICATIONS Time series forecasting Weather forecasting |
title | Experimental forecasts of all-India monthly and summer monsoon rainfall using neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A14%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20forecasts%20of%20all-India%20monthly%20and%20summer%20monsoon%20rainfall%20using%20neural%20network&rft.jtitle=Current%20science%20(Bangalore)&rft.au=Goswami,%20P.&rft.date=1999-06-10&rft.volume=76&rft.issue=11&rft.spage=1481&rft.epage=1483&rft.pages=1481-1483&rft.issn=0011-3891&rft_id=info:doi/&rft_dat=%3Cjstor_proqu%3E24101422%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17382874&rft_id=info:pmid/&rft_jstor_id=24101422&rfr_iscdi=true |