Experimental forecasts of all-India monthly and summer monsoon rainfall using neural network

The cognitive network for rainfall forecast was developed as an alternative forecast tool for rainfall pattern. Based on the hindcast skill and success in experimental forecast for last four years of all-India summer monsoon rainfall (ISMR), we record in the present study our cognitive forecast of I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current science (Bangalore) 1999-06, Vol.76 (11), p.1481-1483
Hauptverfasser: Goswami, P., Crasta, Gration, Sreekanth, V., Shobha, K. V., Naik, M. Kavitha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1483
container_issue 11
container_start_page 1481
container_title Current science (Bangalore)
container_volume 76
creator Goswami, P.
Crasta, Gration
Sreekanth, V.
Shobha, K. V.
Naik, M. Kavitha
description The cognitive network for rainfall forecast was developed as an alternative forecast tool for rainfall pattern. Based on the hindcast skill and success in experimental forecast for last four years of all-India summer monsoon rainfall (ISMR), we record in the present study our cognitive forecast of ISMR for the years 1999 and 2000. While these forecasts are purely experimental, they provide an objective evaluation of the method. In addition, the present study also reports an enhanced scope of cognitive forecast of rainfall pattern, by providing experimental forecasts of all-India monthly mean precipitation for the years 1999 and 2000. These monthly forecasts also provide more stringent evaluation of the method.
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_18097030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24101422</jstor_id><sourcerecordid>24101422</sourcerecordid><originalsourceid>FETCH-LOGICAL-j237t-52bf24e3d4a6ef9890a7d14e3f42c504d518343680388556abeb1210caef6b6f3</originalsourceid><addsrcrecordid>eNqFkE1LxDAURbNQcBz9CUJW7govH23TpQyjDgy40Z1Q0vZFW9NkTFJ0_r2Rce_qwrmHu7hnZAXAWCFUwy7IZYwTABccmhV53X4fMIwzuqQtNT5gr2OK1BuqrS12bhg1nb1L7_ZItRtoXOYZwy-K3jsa9OhMNukSR_dGHS4h7zhMXz58XJHz3EW8_ss1ebnfPm8ei_3Tw25zty8mLupUlLwzXKIYpK7QNKoBXQ8sAyN5X4IcSqaEFJUCoVRZVrrDjnEGvUZTdZURa3J72j0E_7lgTO08xh6t1Q79ElumoKlBwP9iLRRXtczizUmcYvKhPeSHdDi2XDJgknPxA4tPZ60</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17382874</pqid></control><display><type>article</type><title>Experimental forecasts of all-India monthly and summer monsoon rainfall using neural network</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Goswami, P. ; Crasta, Gration ; Sreekanth, V. ; Shobha, K. V. ; Naik, M. Kavitha</creator><creatorcontrib>Goswami, P. ; Crasta, Gration ; Sreekanth, V. ; Shobha, K. V. ; Naik, M. Kavitha</creatorcontrib><description>The cognitive network for rainfall forecast was developed as an alternative forecast tool for rainfall pattern. Based on the hindcast skill and success in experimental forecast for last four years of all-India summer monsoon rainfall (ISMR), we record in the present study our cognitive forecast of ISMR for the years 1999 and 2000. While these forecasts are purely experimental, they provide an objective evaluation of the method. In addition, the present study also reports an enhanced scope of cognitive forecast of rainfall pattern, by providing experimental forecasts of all-India monthly mean precipitation for the years 1999 and 2000. These monthly forecasts also provide more stringent evaluation of the method.</description><identifier>ISSN: 0011-3891</identifier><language>eng</language><publisher>Current Science Association</publisher><subject>Artificial neural networks ; Employment forecasting ; Forecasting models ; Forecasting standards ; India ; Long range weather forecasting ; Monsoons ; Observational research ; Rain ; RESEARCH COMMUNICATIONS ; Time series forecasting ; Weather forecasting</subject><ispartof>Current science (Bangalore), 1999-06, Vol.76 (11), p.1481-1483</ispartof><rights>Copyright ©1999 Current Science Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24101422$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24101422$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,57998,58231</link.rule.ids></links><search><creatorcontrib>Goswami, P.</creatorcontrib><creatorcontrib>Crasta, Gration</creatorcontrib><creatorcontrib>Sreekanth, V.</creatorcontrib><creatorcontrib>Shobha, K. V.</creatorcontrib><creatorcontrib>Naik, M. Kavitha</creatorcontrib><title>Experimental forecasts of all-India monthly and summer monsoon rainfall using neural network</title><title>Current science (Bangalore)</title><description>The cognitive network for rainfall forecast was developed as an alternative forecast tool for rainfall pattern. Based on the hindcast skill and success in experimental forecast for last four years of all-India summer monsoon rainfall (ISMR), we record in the present study our cognitive forecast of ISMR for the years 1999 and 2000. While these forecasts are purely experimental, they provide an objective evaluation of the method. In addition, the present study also reports an enhanced scope of cognitive forecast of rainfall pattern, by providing experimental forecasts of all-India monthly mean precipitation for the years 1999 and 2000. These monthly forecasts also provide more stringent evaluation of the method.</description><subject>Artificial neural networks</subject><subject>Employment forecasting</subject><subject>Forecasting models</subject><subject>Forecasting standards</subject><subject>India</subject><subject>Long range weather forecasting</subject><subject>Monsoons</subject><subject>Observational research</subject><subject>Rain</subject><subject>RESEARCH COMMUNICATIONS</subject><subject>Time series forecasting</subject><subject>Weather forecasting</subject><issn>0011-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAURbNQcBz9CUJW7govH23TpQyjDgy40Z1Q0vZFW9NkTFJ0_r2Rce_qwrmHu7hnZAXAWCFUwy7IZYwTABccmhV53X4fMIwzuqQtNT5gr2OK1BuqrS12bhg1nb1L7_ZItRtoXOYZwy-K3jsa9OhMNukSR_dGHS4h7zhMXz58XJHz3EW8_ss1ebnfPm8ei_3Tw25zty8mLupUlLwzXKIYpK7QNKoBXQ8sAyN5X4IcSqaEFJUCoVRZVrrDjnEGvUZTdZURa3J72j0E_7lgTO08xh6t1Q79ElumoKlBwP9iLRRXtczizUmcYvKhPeSHdDi2XDJgknPxA4tPZ60</recordid><startdate>19990610</startdate><enddate>19990610</enddate><creator>Goswami, P.</creator><creator>Crasta, Gration</creator><creator>Sreekanth, V.</creator><creator>Shobha, K. V.</creator><creator>Naik, M. Kavitha</creator><general>Current Science Association</general><scope>7UA</scope><scope>C1K</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>19990610</creationdate><title>Experimental forecasts of all-India monthly and summer monsoon rainfall using neural network</title><author>Goswami, P. ; Crasta, Gration ; Sreekanth, V. ; Shobha, K. V. ; Naik, M. Kavitha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j237t-52bf24e3d4a6ef9890a7d14e3f42c504d518343680388556abeb1210caef6b6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Artificial neural networks</topic><topic>Employment forecasting</topic><topic>Forecasting models</topic><topic>Forecasting standards</topic><topic>India</topic><topic>Long range weather forecasting</topic><topic>Monsoons</topic><topic>Observational research</topic><topic>Rain</topic><topic>RESEARCH COMMUNICATIONS</topic><topic>Time series forecasting</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goswami, P.</creatorcontrib><creatorcontrib>Crasta, Gration</creatorcontrib><creatorcontrib>Sreekanth, V.</creatorcontrib><creatorcontrib>Shobha, K. V.</creatorcontrib><creatorcontrib>Naik, M. Kavitha</creatorcontrib><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Current science (Bangalore)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goswami, P.</au><au>Crasta, Gration</au><au>Sreekanth, V.</au><au>Shobha, K. V.</au><au>Naik, M. Kavitha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental forecasts of all-India monthly and summer monsoon rainfall using neural network</atitle><jtitle>Current science (Bangalore)</jtitle><date>1999-06-10</date><risdate>1999</risdate><volume>76</volume><issue>11</issue><spage>1481</spage><epage>1483</epage><pages>1481-1483</pages><issn>0011-3891</issn><abstract>The cognitive network for rainfall forecast was developed as an alternative forecast tool for rainfall pattern. Based on the hindcast skill and success in experimental forecast for last four years of all-India summer monsoon rainfall (ISMR), we record in the present study our cognitive forecast of ISMR for the years 1999 and 2000. While these forecasts are purely experimental, they provide an objective evaluation of the method. In addition, the present study also reports an enhanced scope of cognitive forecast of rainfall pattern, by providing experimental forecasts of all-India monthly mean precipitation for the years 1999 and 2000. These monthly forecasts also provide more stringent evaluation of the method.</abstract><pub>Current Science Association</pub><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0011-3891
ispartof Current science (Bangalore), 1999-06, Vol.76 (11), p.1481-1483
issn 0011-3891
language eng
recordid cdi_proquest_miscellaneous_18097030
source Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals
subjects Artificial neural networks
Employment forecasting
Forecasting models
Forecasting standards
India
Long range weather forecasting
Monsoons
Observational research
Rain
RESEARCH COMMUNICATIONS
Time series forecasting
Weather forecasting
title Experimental forecasts of all-India monthly and summer monsoon rainfall using neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A14%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20forecasts%20of%20all-India%20monthly%20and%20summer%20monsoon%20rainfall%20using%20neural%20network&rft.jtitle=Current%20science%20(Bangalore)&rft.au=Goswami,%20P.&rft.date=1999-06-10&rft.volume=76&rft.issue=11&rft.spage=1481&rft.epage=1483&rft.pages=1481-1483&rft.issn=0011-3891&rft_id=info:doi/&rft_dat=%3Cjstor_proqu%3E24101422%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17382874&rft_id=info:pmid/&rft_jstor_id=24101422&rfr_iscdi=true