Determination of l-tryptophan and l-kynurenine derivatized with (R)-4-(3-isothiocyanatopyrrolidin-1-yl)-7-(N,N-dimethylaminosulfonyl)-2,1,3-benzoxadiazole by LC-MS/MS on a triazole-bonded column and their quantification in human serum
The concentrations of l‐tryptophan (Trp) and the metabolite l‐kynurenine (KYN) can be used to evaluate the in‐vivo activity of indoleamine 2,3‐dioxygenase (IDO) and tryptophan 2,3‐dioxygenase (TDO). As such, a novel method involving derivatization of l‐Trp and l‐KYN with (R)‐4‐(3‐isothiocyanatopyrro...
Gespeichert in:
Veröffentlicht in: | Biomedical chromatography 2016-09, Vol.30 (9), p.1481-1486 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The concentrations of l‐tryptophan (Trp) and the metabolite l‐kynurenine (KYN) can be used to evaluate the in‐vivo activity of indoleamine 2,3‐dioxygenase (IDO) and tryptophan 2,3‐dioxygenase (TDO). As such, a novel method involving derivatization of l‐Trp and l‐KYN with (R)‐4‐(3‐isothiocyanatopyrrolidin‐1‐yl)‐7‐(N,N‐dimethylaminosulfonyl)‐2,1,3‐benzoxadiazole (DBD‐PyNCS) and separation by high‐performance liquid chromatography (HPLC) with tandem mass spectrometric (MS/MS) detection on a triazole‐bonded column (Cosmosil HILIC®) was developed to determine their concentrations. The optimized mobile phase, CH3CN/10 mm ammonium formate in H2O (pH 5.0) (90:10, v/v) eluted isocratically, resulted in satisfactory separation and MS/MS detection of the analytes. The detection limits of l‐Trp and l‐KYN were approximately 50 and 4.0 pm, respectively. The column temperature affected the retention behaviour of the Trp and KYN derivatives, with increased column temperatures leading to increased capacity factors; positive enthalpy changes were revealed by van't Hoff plot analyses. Using the proposed LC‐MS/MS method, l‐Trp and l‐KYN were successfully determined in 10 μL human serum using 1‐methyl‐l‐Trp as an internal standard. The precision and recovery of l‐Trp were in the ranges 2.85–9.29 and 95.8–113%, respectively, while those of l‐KYN were 2.51–16.0 and 80.8–98.2%, respectively. The proposed LC‐MS/MS method will be useful for evaluating the in vivo activity of IDO or TDO. Copyright © 2016 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0269-3879 1099-0801 |
DOI: | 10.1002/bmc.3709 |