Apparent Surface Associated Lag Time in Growth of Primary Biofilm Cells

The ability of microorganisms to form biofilms has been well documented. Bacterial cells make a transition from a planktonic state to a sessile state, replicate, and subsequently populate a surface. In this study, organisms that initially colonize a ``clean'' surface are referred to as ``p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbial ecology 2000-07, Vol.40 (1), p.8-15
Hauptverfasser: Rice, A.R, Hamilton, M.A, Camper, A.K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ability of microorganisms to form biofilms has been well documented. Bacterial cells make a transition from a planktonic state to a sessile state, replicate, and subsequently populate a surface. In this study, organisms that initially colonize a ``clean'' surface are referred to as ``primary'' biofilm cells. The progeny of the first generation of sessile cells are known as ``secondary'' biofilm cells. This study examined the growth of planktonic, primary, and secondary biofilm cells of a green fluorescent protein producing (GFP+) Pseudomonas aeruginosa PA01. Biofilm experiments were performed in a parallel plate flow cell reactor with a glass substratum. Individual cells were tracked over time using a confocal scanning laser microscope (CSLM). Primary cells experience a lag in their growth that may be attributed to adapting to a sessile environment or undergoing a phenotypic change. This is referred to as a surface associated lag time. Planktonic and secondary biofilm cells both grew at a faster rate than the primary biofilm cells under the same nutrient conditions.
ISSN:0095-3628
1432-184X
DOI:10.1007/s002480000011