Estuarine fouling communities are dominated by nonindigenous species in the presence of an invasive crab
Interactions between anthropogenic disturbances and introduced and native species can shift ecological communities, potentially leading to the successful establishment of additional invaders. Since its discovery in New Jersey in 1988, the Asian shore crab (Hemigrapsus sanguineus) has continued to ex...
Gespeichert in:
Veröffentlicht in: | Biological invasions 2016-06, Vol.18 (6), p.1653-1665 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Interactions between anthropogenic disturbances and introduced and native species can shift ecological communities, potentially leading to the successful establishment of additional invaders. Since its discovery in New Jersey in 1988, the Asian shore crab (Hemigrapsus sanguineus) has continued to expand its range, invading estuarine and coastal habitats in eastern North America. In estuarine environments, H. sanguineus occupies similar habitats to native, panopeid mud crabs. These crabs, and a variety of fouling organisms (both NIS and native), often inhabit man-made substrates (like piers and riprap) and anthropogenic debris. In a series of in situ experiments at a closed dock in southwestern Long Island (New York, USA), we documented the impacts of these native and introduced crabs on hard-substrate fouling communities. We found that while the presence of native mud crabs did not significantly influence the succession of fouling communities compared to caged and uncaged controls, the presence of introduced H. sanguineus reduced the biomass of native tunicates (particularly Molgula manhattensis), relative to caged controls. Moreover, the presence of H. sanguineus favored fouling communities dominated by introduced tunicates (especially Botrylloides violaceous and Diplosoma listerianum). Altogether, our results suggest that H. sanguineus could help facilitate introduced fouling tunicates in the region, particularly in locations where additional solid substrates have created novel habitats. |
---|---|
ISSN: | 1387-3547 1573-1464 |
DOI: | 10.1007/s10530-016-1108-3 |