Five stages of progressive β-cell dysfunction in the laboratory Nile rat model of type 2 diabetes

We compared the evolution of insulin resistance, hyperglycemia, and pancreatic β-cell dysfunction in the Nile rat (Arvicanthis niloticus), a diurnal rodent model of spontaneous type 2 diabetes (T2D), when maintained on regular laboratory chow versus a high-fiber diet. Chow-fed Nile rats already disp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of endocrinology 2016-06, Vol.229 (3), p.343-356
Hauptverfasser: Yang, Kaiyuan, Gotzmann, Jonathan, Kuny, Sharee, Huang, Hui, Sauvé, Yves, Chan, Catherine B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We compared the evolution of insulin resistance, hyperglycemia, and pancreatic β-cell dysfunction in the Nile rat (Arvicanthis niloticus), a diurnal rodent model of spontaneous type 2 diabetes (T2D), when maintained on regular laboratory chow versus a high-fiber diet. Chow-fed Nile rats already displayed symptoms characteristic of insulin resistance at 2 months (increased fat/lean mass ratio and hyperinsulinemia). Hyperglycemia was first detected at 6 months, with increased incidence at 12 months. By this age, pancreatic islet structure was disrupted (increased α-cell area), insulin secretion was impaired (reduced insulin secretion and content) in isolated islets, insulin processing was compromised (accumulation of proinsulin and C-peptide inside islets), and endoplasmic reticulum (ER) chaperone protein ERp44 was upregulated in insulin-producing β-cells. By contrast, high-fiber-fed Nile rats had normoglycemia with compensatory increase in β-cell mass resulting in maintained pancreatic function. Fasting glucose levels were predicted by the α/β-cell ratios. Our results show that Nile rats fed chow recapitulate the five stages of progression of T2D as occurs in human disease, including insulin-resistant hyperglycemia and pancreatic islet β-cell dysfunction associated with ER stress. Modification of diet alone permits long-term β-cell compensation and prevents T2D.
ISSN:0022-0795
1479-6805
DOI:10.1530/JOE-15-0517