Better colonisation of newly emerged Bordetella pertussis in the co-infection mouse model study
Abstract Molecular epidemiological data indicates that the resurgence of pertussis (whooping cough) in populations with high vaccine coverage is associated with genomic adaptation of Bordetella pertussis , the causative agent of the disease, to vaccine selection pressure. We have previously shown th...
Gespeichert in:
Veröffentlicht in: | Vaccine 2016-07, Vol.34 (34), p.3967-3971 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Molecular epidemiological data indicates that the resurgence of pertussis (whooping cough) in populations with high vaccine coverage is associated with genomic adaptation of Bordetella pertussis , the causative agent of the disease, to vaccine selection pressure. We have previously shown that in the period after the introduction of acellular pertussis vaccine (ACV), the majority of circulating strains in Australia switched to single nucleotide polymorphism (SNP) cluster I (carrying ptxP3/prn2 ), replacing SNP cluster II (carrying ptxP1/prn3 ). In this study, we carried out an in vivo competition assay using a mouse model infected with SNP cluster I and II B. pertussis strains from Australia. We found that the SNP cluster I strain colonised better than the SNP cluster II strain, in both naïve and immunised mice, suggesting that SNP cluster I strains had better fitness regardless of immunisation status of the host, consistent with SNP cluster I strains replacing SNP cluster II. Nevertheless, we found that ACV enhanced clearance of both SNP cluster I and II strains from the mouse respiratory tract. |
---|---|
ISSN: | 0264-410X 1873-2518 |
DOI: | 10.1016/j.vaccine.2016.06.052 |