Accuracy of 3D fluoroscopy-navigated anterior transpedicular screw insertion in the cervical spine: an experimental study
Purpose The technique of pedicle screw stabilization is finding increasing popularity for use in the cervical spine. Implementing anterior transpedicular screws (ATPS) in cervical spine offers theoretical advantages compared to posterior stabilization. The goal of the current study was the developme...
Gespeichert in:
Veröffentlicht in: | European spine journal 2016-06, Vol.25 (6), p.1683-1689 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
The technique of pedicle screw stabilization is finding increasing popularity for use in the cervical spine. Implementing anterior transpedicular screws (ATPS) in cervical spine offers theoretical advantages compared to posterior stabilization. The goal of the current study was the development of a new setting for navigated insertion of ATPS, combining the advantage of reduced invasiveness of an anterior approach with the technical advantages of navigation.
Methods
20 screws were implanted in levels C3 to C6 of four cervical spine models (SAWBONES
®
Cervical Vertebrae with Anterior Ligament) with the use of 3D fluoroscopy navigation system [Arcadis Orbic 3D, Siemens and VectorVision fluoro 3D trauma software (BrainLAB)]. The accuracy of inserted screws was analyzed according to postoperative CT scans and following the modified Gertzbein and Robbins classification.
Results
20 anterior pedicle screws were placed in four human cervical spine models. Of these, eight screws were placed in C3, two screws in C4, six screws in C5, and four screws in C6. 16 of 20 screws (80 %) reached a grade 1 level of accuracy according to the modified Gertzbein and Robbins Classification. Three screws (15 %) were grade 2, and one screw (5 %) was grade 3. Grade 4 and 5 positions were not evident. Summing grades 1 and 2 together as “good” positions, 95 % of the screws achieved this level. Only a single screw did not fulfill these criteria.
Conclusion
The setting introduced in this study for navigated insertion of ATPS into cervical spine bone models is well implemented and shows excellent results, with an accuracy of 95 % (Gertzbein and Robbins grade 2 or better). Thus, this preliminary study represents a prelude to larger studies with larger case numbers on human specimens. |
---|---|
ISSN: | 0940-6719 1432-0932 |
DOI: | 10.1007/s00586-016-4403-x |