BTG4 is a meiotic cell cycle–coupled maternal-zygotic-transition licensing factor in oocytes

B-cell translocation gene-4 (Btg4) bridges interactions of translation initiation factor eIF4E and CCR4–NOT deadenylase, thus triggering decay of maternal mRNA during mouse oocyte maturation. The mRNAs stored in oocytes undergo general decay during the maternal-zygotic transition (MZT), and their st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2016-05, Vol.23 (5), p.387-394
Hauptverfasser: Yu, Chao, Ji, Shu-Yan, Sha, Qian-Qian, Dang, Yujiao, Zhou, Jian-Jie, Zhang, Yin-Li, Liu, Yang, Wang, Zhong-Wei, Hu, Boqiang, Sun, Qing-Yuan, Sun, Shao-Chen, Tang, Fuchou, Fan, Heng-Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:B-cell translocation gene-4 (Btg4) bridges interactions of translation initiation factor eIF4E and CCR4–NOT deadenylase, thus triggering decay of maternal mRNA during mouse oocyte maturation. The mRNAs stored in oocytes undergo general decay during the maternal-zygotic transition (MZT), and their stability is tightly interconnected with meiotic cell-cycle progression. However, the factors that trigger decay of maternal mRNA and couple this event to oocyte meiotic maturation remain elusive. Here, we identified B-cell translocation gene-4 (BTG4) as an MZT licensing factor in mice. BTG4 bridged CNOT7, a catalytic subunit of the CCR4–NOT deadenylase, to eIF4E, a key translation initiation factor, and facilitated decay of maternal mRNA. Btg4 -null females produced morphologically normal oocytes but were infertile, owing to early developmental arrest. The intrinsic MAP kinase cascade in oocytes triggered translation of Btg4 mRNA stored in fully grown oocytes by targeting the 3′ untranslated region, thereby coupling CCR4–NOT deadenylase–mediated decay of maternal mRNA with oocyte maturation and fertilization. This is a key step in oocyte cytoplasmic maturation that determines the developmental potential of mammalian embryos.
ISSN:1545-9993
1545-9985
DOI:10.1038/nsmb.3204