Physico-geochemical and mineral composition of neem tree soils and relation to organic properties

The Neem tree, the oil of which has a long history of pesticide, fertilizer and medicinal use in India, has been studied extensively for its organic compounds. Here we present a physical, mineralogical and geochemical database resulting from the analyses of two Neem soil profiles (epipedons) in Indi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geografiska annaler. Series A, Physical geography Physical geography, 2016-06, Vol.98 (2), p.143-154
Hauptverfasser: Mahaney, William C., Voros, Joan, Krishnamani, Ramanathan, Hancock, Ronald G.v., Aufreiter, Susan, Milner, Michael W., Allen, Christopher C.r.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Neem tree, the oil of which has a long history of pesticide, fertilizer and medicinal use in India, has been studied extensively for its organic compounds. Here we present a physical, mineralogical and geochemical database resulting from the analyses of two Neem soil profiles (epipedons) in India. Neem tree derivatives are used in the manufacture of a variety of products, from anti-bacterial drugs and insecticides to fertilizers and animal feeds. A preliminary geochemical and mineralogical analysis of Neem soils is made to explore the potential for chemical links between Neem tree derivatives and soils. Physical soil characteristics, including colour, texture and clay mineralogy, suggest the two pedons formed under different hydrological regimes, and hence, are products of different leaching environments, one well-drained site, the other poorly drained. Geochemically, the two Neem soils exhibit similarities, with elevated concentrations of Th and rare earth elements. These elements are of interest because of their association with phosphates, especially monazite and apatite, and the potential link to fertilizer derivatives. Higher concentrations of trace elements in the soils may be linked to nutritional derivatives and to cell growth in the Neem tree.
ISSN:0435-3676
1468-0459
DOI:10.1111/geoa.12129