Using models to guide field experiments: a priori predictions for the CO sub(2) response of a nutrient- and water-limited native Eucalypt woodland

The response of terrestrial ecosystems to rising atmospheric CO sub(2) concentration (C sub(a)), particularly under nutrient-limited conditions, is a major uncertainty in Earth System models. The Eucalyptus Free-Air CO sub(2) Enrichment (EucFACE) experiment, recently established in a nutrient- and w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology 2016-08, Vol.22 (8), p.2834-2851
Hauptverfasser: Medlyn, Belinda E, De Kauwe, Martin G, Zaehle, Sonke, Walker, Anthony P, Duursma, Remko A, Luus, Kristina, Mishurov, Mikhail, Pak, Bernard, Smith, Benjamin, Wang, Ying-Ping, Yang, Xiaojuan, Crous, Kristine Y, Drake, John E, Gimeno, Teresa E, Macdonald, Catriona A, Norby, Richard J, Power, Sally A, Tjoelker, Mark G, Ellsworth, David S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The response of terrestrial ecosystems to rising atmospheric CO sub(2) concentration (C sub(a)), particularly under nutrient-limited conditions, is a major uncertainty in Earth System models. The Eucalyptus Free-Air CO sub(2) Enrichment (EucFACE) experiment, recently established in a nutrient- and water-limited woodland presents a unique opportunity to address this uncertainty, but can best do so if key model uncertainties have been identified in advance. We applied seven vegetation models, which have previously been comprehensively assessed against earlier forest FACE experiments, to simulate a priori possible outcomes from EucFACE. Our goals were to provide quantitative projections against which to evaluate data as they are collected, and to identify key measurements that should be made in the experiment to allow discrimination among alternative model assumptions in a postexperiment model intercomparison. Simulated responses of annual net primary productivity (NPP) to elevated C sub(a) ranged from 0.5 to 25% across models. The simulated reduction of NPP during a low-rainfall year also varied widely, from 24 to 70%. Key processes where assumptions caused disagreement among models included nutrient limitations to growth; feedbacks to nutrient uptake; autotrophic respiration; and the impact of low soil moisture availability on plant processes. Knowledge of the causes of variation among models is now guiding data collection in the experiment, with the expectation that the experimental data can optimally inform future model improvements.
ISSN:1354-1013
1365-2486
DOI:10.1111/gcb.13268