Generation of sensory hair cells by genetic programming with a combination of transcription factors

© 2015. Published by The Company of Biologists Ltd. Mechanosensory hair cells (HCs) are the primary receptors of our senses of hearing and balance. Elucidation of the transcriptional networks regulating HC fate determination and differentiation is crucial not only to understand inner ear development...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development (Cambridge) 2015-06, Vol.142 (11), p.1948-1959
Hauptverfasser: Costa, Aida, Sanchez-Guardado, Luis, Juniat, Stephanie, Gale, Jonathan E., Daudet, Nicolas, Pinto Henrique, Domingos Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:© 2015. Published by The Company of Biologists Ltd. Mechanosensory hair cells (HCs) are the primary receptors of our senses of hearing and balance. Elucidation of the transcriptional networks regulating HC fate determination and differentiation is crucial not only to understand inner ear development but also to improve cell replacement therapies for hearing disorders. Here, we show that combined expression of the transcription factors Gfi1, Pou4f3 and Atoh1 can induce direct programming towards HC fate, both during in vitro mouse embryonic stem cell differentiation and following ectopic expression in chick embryonic otic epithelium. Induced HCs (iHCs) express numerous HC-specific markers and exhibit polarized membrane protrusions reminiscent of stereociliary bundles. Transcriptome profiling confirms the progressive establishment of a HC-specific gene signature during in vitro iHC programming. Overall, this work provides a novel approach to achieve robust and highly efficient HC production in vitro, which could be used as a model to study HC development and to drive inner ear HC regeneration. This work was supported by Fundação para a Ciência e Tecnologia, Portugal [PTDC/SAU-NEU/71310/2006, SFRH/BD/38461/2007 to A.C.]. A.C. was also a recipient of an EMBO Short-Term Fellowship during her stay at the UCL Ear Institute. S.J. is funded by a UCL Impact Studentship to J.E.G. Work in N.D.'s lab is supported by the BBSRC [BB/L003163/1].
ISSN:0950-1991
1477-9129
DOI:10.1242/dev.119149