Intracellular periodontal pathogen exploits recycling pathway to exit from infected cells

Summary Although human gingival epithelium prevents intrusions by periodontal bacteria, Porphyromonas gingivalis, the most well‐known periodontal pathogen, is able to invade gingival epithelial cells and pass through the epithelial barrier into deeper tissues. We previously reported that intracellul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular microbiology 2016-07, Vol.18 (7), p.928-948
Hauptverfasser: Takeuchi, Hiroki, Takada, Akihiko, Kuboniwa, Masae, Amano, Atsuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Although human gingival epithelium prevents intrusions by periodontal bacteria, Porphyromonas gingivalis, the most well‐known periodontal pathogen, is able to invade gingival epithelial cells and pass through the epithelial barrier into deeper tissues. We previously reported that intracellular P. gingivalis exits from gingival epithelial cells via a recycling pathway. However, the underlying molecular process remains unknown. In the present study, we found that the pathogen localized in early endosomes recruits VAMP2 and Rab4A. VAMP2 was found to be specifically localized in early endosomes, although its localization remained unclear in mammalian cells. A single transmembrane domain of VAMP2 was found to be necessary and sufficient for localizing in early endosomes containing P. gingivalis in gingival epithelial cells. VAMP2 forms a complex with EXOC2/Sec5 and EXOC3/Sec6, whereas Rab4A mediates dissociation of the EXOC complex followed by recruitment of RUFY1/Rabip4, Rab4A effector, and Rab14. Depletion of VAMP2 or Rab4A resulted in accumulation of bacteria in early endosomes and disturbed bacterial exit from infected cells. It is suggested that these novel dynamics allow P. gingivalis to exploit fast recycling pathways promoting further bacterial penetration of gingival tissues.
ISSN:1462-5814
1462-5822
DOI:10.1111/cmi.12551