Innate immunomodulation to trypanosomatid parasite infections
The recognition of invading pathogens by the innate immune system is essential for host protection against human parasites and the initiation of an effective adaptive immune response. Innate immune cells such as macrophages and dendritic cells (DCs) are involved in the first line of defense against...
Gespeichert in:
Veröffentlicht in: | Experimental parasitology 2016-08, Vol.167, p.67-75 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The recognition of invading pathogens by the innate immune system is essential for host protection against human parasites and the initiation of an effective adaptive immune response. Innate immune cells such as macrophages and dendritic cells (DCs) are involved in the first line of defense against protozoan parasites via sensing the invaders through pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs). Activation of macrophages and dendritic cells starts with the interaction between microbial ligands (pathogen-associated molecular patterns - PAMPs) and PRRs, and these activated cells influence the overall immune response. Trypanosomatid PAMPs are sensed by TLRs; for example, TLR2 recognizes alkylacylglycerol and lipophosphoglycan in Trypanosoma cruzi and Leishmania, respectively; TLR2/TLR4 recognize glycoisnositolphospholipids and glycosylphosphatidyl inositol in Trypanosoma species; and TLR9 recognizes genomic DNA in Trypanosoma. TLR signaling includes the recruitment of different adaptor molecules that activate various transcription factors, such as NF-kB, IRF3/7, and MAP kinases, to induce the production of pro-inflammatory cytokines and type I interferons. Moreover, activated macrophages and dendritic cells produce ROS and NOS, which limit pathogen survival, and large amounts of cytokines; additionally, antigen presentation enhances the adaptive immune response. In this review, we highlight the recent findings on PAMP recognition in trypanosomatid infections and the signaling pathways activated by PRRs.
[Display omitted]
•Innate immune cells recognize protozoan infections through PRRs.•Microbial PAMPs activate innate immune cells and regulate immune response.•Immune response limits pathogen development through pro-inflammatory cytokines. |
---|---|
ISSN: | 0014-4894 1090-2449 |
DOI: | 10.1016/j.exppara.2016.05.005 |