A Drosophila heat shock response represents an exception rather than a rule amongst Diptera species

Heat shock protein 70 (Hsp70) is the major player that underlies adaptive response to hyperthermia in all organisms studied to date. We investigated patterns of Hsp70 expression in larvae of dipteran species collected from natural populations of species belonging to four families from different evol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insect molecular biology 2016-08, Vol.25 (4), p.431-449
Hauptverfasser: Zatsepina, O. G., Przhiboro, A. A., Yushenova, I. A., Shilova, V., Zelentsova, E. S., Shostak, N. G., Evgen'ev, M. B., Garbuz, D. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heat shock protein 70 (Hsp70) is the major player that underlies adaptive response to hyperthermia in all organisms studied to date. We investigated patterns of Hsp70 expression in larvae of dipteran species collected from natural populations of species belonging to four families from different evolutionary lineages of the order Diptera: Stratiomyidae, Tabanidae, Chironomidae and Ceratopogonidae. All investigated species showed a Hsp70 expression pattern that was different from the pattern in Drosophila. In contrast to Drosophila, all of the species in the families studied were characterized by high constitutive levels of Hsp70, which was more stable than that in Drosophila. When Stratiomyidae Hsp70 proteins were expressed in Drosophila cells, they became as short‐lived as the endogenous Hsp70. Interestingly, three species of Ceratopogonidae and a cold‐water species of Chironomidae exhibited high constitutive levels of Hsp70 mRNA and high basal levels of Hsp70. Furthermore, two species of Tabanidae were characterized by significant constitutive levels of Hsp70 and highly stable Hsp70 mRNA. In most cases, heat‐resistant species were characterized by a higher basal level of Hsp70 than more thermosensitive species. These data suggest that different trends were realized during the evolution of the molecular mechanisms underlying the regulation of the responses of Hsp70 genes to temperature fluctuations in the studied families.
ISSN:0962-1075
1365-2583
DOI:10.1111/imb.12235