Phosphatidylcholine protects neurons from toxic effects of amyloid β-protein in culture

Abstract Amyloid β-protein (Aβ) is the major component of extracellular plaques in the brains of patients with Alzheimer's disease. It has been suggested that the interaction of Aβ with membrane cholesterol is essential for Aβ to exert neurotoxicity; however, the effect of phospholipids, anothe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 2016-07, Vol.1642, p.376-383
Hauptverfasser: Ko, Mihee, Hattori, Toshihidei, Abdullah, Mohammad, Gong, Jian-Sheng, Yamane, Tsuneo, Michikawa, Makoto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Amyloid β-protein (Aβ) is the major component of extracellular plaques in the brains of patients with Alzheimer's disease. It has been suggested that the interaction of Aβ with membrane cholesterol is essential for Aβ to exert neurotoxicity; however, the effect of phospholipids, another major membrane lipid component, on Aβ-induced neurotoxicity remains unclarified. Here we report the protective effect of phosphatidylcholine (PC) on primary cultured neurons against Aβ1-42-induced damage. Aβ1-42 caused neuronal death as demonstrated by lactose dehydrogenase (LDH) release, which was completely prevented by a pretreatment with PC in a dose-dependent manner. PC containing unsaturated long-chain acyl groups, 1,2-dioleoyl-PC (DOPC), also prevented neuronal death caused by Aβ1-42. The oleic acid ethyl-ester (OAEE) partially prevented Aβ1-42-induced neurotoxicity. Neurons that were pretreated with DOPC or OAEE for 24 h, washed out, and exposed to Aβ1-42 in the absence of either of these reagents, were still resistant to Aβ1-42-induced neurotoxicity. In contrast, treatment with phosphotidylserine (PS) or docosahexaenoic acid etyl-ester (DHAEE) had no protective effect on neurons against Aβ1-42-induced damage. These results suggest that the control of cellular PC content, not PS content, may prove useful in the prevention or treatment of Alzheimer's disease.
ISSN:0006-8993
1872-6240
DOI:10.1016/j.brainres.2016.04.035