Residual flow and tidal asymmetry in the Singapore Strait, with implications for resuspension and residual transport of sediment

The Singapore Strait connects the South China Sea, where tides are dominantly diurnal, to the dominantly semidiurnal Indian Ocean. At this transition, the tidal water level oscillations are observed to be semidiurnal while the tidal current oscillations are mixed, diurnal to fully diurnal. Due to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research: Oceans 2012-04, Vol.117 (C4), p.n/a
Hauptverfasser: van Maren, D. S., Gerritsen, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Singapore Strait connects the South China Sea, where tides are dominantly diurnal, to the dominantly semidiurnal Indian Ocean. At this transition, the tidal water level oscillations are observed to be semidiurnal while the tidal current oscillations are mixed, diurnal to fully diurnal. Due to the interaction of the diurnal constituents with the semidiurnal M2 tide, the tides are strongly asymmetric. Both residual flows and subtidal flows, with periodicities of 2 weeks to 1 year, are strong. In order to analyze and explain the hydrodynamics around Singapore, a well‐documented and calibrated regional tidal model application was further improved and validated. Analysis of the results of this model shows that the diurnal tidal wave is primarily standing, with an amphidromic point close to Singapore, explaining the dominantly diurnal current and semidiurnal water level oscillations. Analysis of the model results further indicates that the fortnightly constituents in the subtidal flow are probably compound tides, with a combined amplitude over 10 cm/s. Pronounced yearly and half‐yearly cycles in spring tidal current amplitude and asymmetry exist, resulting from interaction of the diurnal and the semidiurnal spring‐neap cycles, compound tides, and the monsoon currents. A simple analytical transport formula was applied to determine the relative importance of tidal asymmetry and residual flows, verified with a full sediment transport model. With fine sediment being more sensitive for residual flow and coarser sediment for tidal flow, a pronounced divergence in sediment transport pathways may exist, depending on the grain size. Key Points A pronounced difference in horizontal and vertical tide exists near Singapore Tidal flow velocities near Singapore are strongly asymmetric Transport by tidal asymmetry is in opposite direction of that by residual flow
ISSN:0148-0227
2169-9275
2156-2202
2169-9291
DOI:10.1029/2011JC007615