Cytotoxic activity of the novel heterocyclic compound G-11 is primarily mediated through intrinsic apoptotic pathway
Natural and chemically synthesized heterocyclic compounds have been explored for their potential use as anticancer agents. We had synthesized non-natural heterocyclic analogs and evaluated their anti-tumor activity by measuring effect on cell proliferation and induction of apoptosis in different cel...
Gespeichert in:
Veröffentlicht in: | Apoptosis (London) 2016-07, Vol.21 (7), p.873-886 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Natural and chemically synthesized heterocyclic compounds have been explored for their potential use as anticancer agents. We had synthesized non-natural heterocyclic analogs and evaluated their anti-tumor activity by measuring effect on cell proliferation and induction of apoptosis in different cell lines. Previously, we identified a pyrazole-containing compound (G-11) showing cytotoxic effect towards leukemia and lymphoma cell lines. In this study, we further investigated the mechanistic aspects of anticancer properties of G-11 in HL-60 cell line. We demonstrated that cytotoxic effect of G-11 is mediated by caspase-dependent apoptosis. However, the involvement of mitochondrial dysfunction induced by G-11 was independent of caspases. G-11 triggered generation of ROS, caused disruption of mitochondrial transmembrane potential, increased release of cytochrome c to the cytosol, and altered the expression of Bcl-2 and Bax proteins. These results suggest significant involvement of intrinsic apoptotic pathway. This study comprehensively details the possible mechanisms of action of a novel heterocyclic compound which could find its potential use as an anticancer agent. |
---|---|
ISSN: | 1360-8185 1573-675X |
DOI: | 10.1007/s10495-016-1248-z |