CB-09 THE CELL OF ORIGIN FOR GLIOBLASTOMA CONTRIBUTES TO THE PHENOTYPIC HETEROGENEITY OF GLIOMA STEM CELLS

Glioblastoma Multiforme (GBM) is the most frequent adult primary malignant brain tumor that remains incurable despite aggressive treatment. The cell of origin (COO) for GBM is unknown but assumed to be a glial stem or progenitor cell. GBM harbours hierarchical tumor cells called glioma stem cells (G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuro-oncology (Charlottesville, Va.) Va.), 2014-11, Vol.16 (suppl 5), p.v42-v42
Hauptverfasser: Jiang, Y., Marinescu, V. D., Xie, Y., Haglund, C., Jarvius, M., Lindberg, N., Olofsson, T., Hesselager, G., Alafuzoff, I., Fryknas, M., Larsson, R., Nelander, S., Uhrbom, L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glioblastoma Multiforme (GBM) is the most frequent adult primary malignant brain tumor that remains incurable despite aggressive treatment. The cell of origin (COO) for GBM is unknown but assumed to be a glial stem or progenitor cell. GBM harbours hierarchical tumor cells called glioma stem cells (GSCs) that maintain tumor growth, drive tumor progression and cause tumor relapse due to their increased resistance to therapy. We have analyzed the significance of cellular origin for GBM development and GSC properties by comparing mouse GBMs and GSCs derived thereof induced in neural stem cells (NSCs), glial-restricted precursor cells (GPCs) or oligodendrocyte precursor cells (OPCs) by identical mutations. There were striking differences in GBM development and the phenotypes of GSCs and their response to drugs owing to the COO. Global gene expression analysis of mouse GSC lines displayed a clear separation due to COO and differential gene expression analysis identified a COO gene signature of 175 genes. Cross-species bioinformatics analyses were performed. First we analyzed the human cancer genome atlas (TCGA) GBM tissue samples and the mouse GSC expression data for a collection of TCGA GBM subtype signature genes. This showed that we could model both Proneural and Mesenchymal GBMs in mice by merely switching the COO. Next, we used the mouse COO gene signature to stratify a large number of newly established human glioma stem cell lines. This produced two groups of human GSCs; the NSC origin group and the progenitor cell (PC) origin group in which the mouse GPC- and OPC-derived genes were combined. Importantly, patient survival was significantly different between the NSC and PC COO groups with a better prognosis for the PC group patients. Thus, the cell of origin is essential for GBM biology and needs to be considered for more accurate patient stratification, target identification and drug discovery.
ISSN:1522-8517
1523-5866
DOI:10.1093/neuonc/nou241.8