Protective effect of Tremella fuciformis Berk extract on LPS-induced acute inflammation via inhibition of the NF-κB and MAPK pathways

Tremella fuciformis Berk (TFB) has long been used as a traditional medicine in Asia. Although TFB exhibits antioxidant and anti-inflammatory effects, the mechanisms of action responsible have remained unknown. We confirmed the anti-inflammatory effects of Tremella fuciformis Berk extract (TFE) in RA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food & function 2016-07, Vol.7 (7), p.3263-3272
Hauptverfasser: Lee, Jangho, Ha, Su Jeong, Lee, Hye Jin, Kim, Min Jung, Kim, Jin Hee, Kim, Yun Tai, Song, Kyung-Mo, Kim, Young-Jun, Kim, Hyun Ku, Jung, Sung Keun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tremella fuciformis Berk (TFB) has long been used as a traditional medicine in Asia. Although TFB exhibits antioxidant and anti-inflammatory effects, the mechanisms of action responsible have remained unknown. We confirmed the anti-inflammatory effects of Tremella fuciformis Berk extract (TFE) in RAW 264.7 cells and observed significantly suppressed LPS-induced iNOS/NO and COX-2/PGE2 production. TFE also suppressed LPS-induced IKK, IkB, and p65 phosphorylation, as well as LPS-induced translocation of p65 from the cytosol. Additionally, TFE inhibited LPS-induced phosphorylation of MAPKs. In an acute inflammation study, oral administration of TFE significantly inhibited LPS-induced IL-1β, IL-6 and TNF-α production and iNOS and COX-2 expression. The major bioactive compounds from TFB extract were identified as gentisic acid, protocatechuic acid, 4-hydroxybenzoic acid, and coumaric acid. Among these compounds, protocatechuic acid showed the strongest inhibitory effects on LPS-induced NO production in RAW 264.7 cells. Overall, these results suggest that TFE is a promising anti-inflammatory agent that suppresses iNOS/NO and COX-2/PGE2 expression, as well as the NF-κB and MAPK signaling pathways.
ISSN:2042-6496
2042-650X
DOI:10.1039/c6fo00540c