Slope-confined submarine canyons in the Baiyun deep-water area, northern South China Sea: variation in their modern morphology
On the basis of newly collected multibeam bathymetric data, chirp profiles and existing seismic data, we presented a detailed morphological interpretation of a series of slope-confined canyons in water depths of 300–2000 m in the Baiyun deep-water area, northern margin of the South China Sea. Althou...
Gespeichert in:
Veröffentlicht in: | Marine geophysical researches 2016-06, Vol.37 (2), p.95-112 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | On the basis of newly collected multibeam bathymetric data, chirp profiles and existing seismic data, we presented a detailed morphological interpretation of a series of slope-confined canyons in water depths of 300–2000 m in the Baiyun deep-water area, northern margin of the South China Sea. Although these canyons are commonly characterized by regular spacing and a straight-line shape, they vary in their lengths, starting and ending water depths, canyon relief, slope gradients, wall slope gradients and depth profiles along the axis. The eastern canyons (C1–C8) have complex surface features, low values in their slope gradient, canyon relief and wall slope gradient and high values in their length and starting and ending depth contrasting to the western ones (C9–C17). From the bathymetric data and chirp profiles, we interpret two main processes that have controlled the morphology and evolution of the canyons: axial incision and landsliding. The western part of the shelf margin where there were at least four stages of submerged reefs differs from the eastern part of the shelf margin where sedimentary undulations occurred at a water depth of ~650 m. We consider that the variation in morphology of submarine canyons in the study area is the result of multiple causes, with the leading cause being the difference in stability of the upper slope which is related to the submerged reefs and sedimentary undulations. |
---|---|
ISSN: | 0025-3235 1573-0581 |
DOI: | 10.1007/s11001-016-9269-0 |