Patterns of morphological diversification of mainland Anolis lizards from northwestern South America

Anolis lizards are one of the most diverse vertebrate genera and are the classic example of adaptive radiation and convergent evolution. Anoles exhibit great morphological diversity produced by the ecological opportunity to exploit several arboreal niches. Anole radiation in the Caribbean islands is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zoological journal of the Linnean Society 2016-03, Vol.176 (3), p.632-647
Hauptverfasser: Moreno‐Arias, Rafael A., Calderón‐Espinosa, Martha L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Anolis lizards are one of the most diverse vertebrate genera and are the classic example of adaptive radiation and convergent evolution. Anoles exhibit great morphological diversity produced by the ecological opportunity to exploit several arboreal niches. Anole radiation in the Caribbean islands is well studied, but the mainland radiation is less understood. We used a large morphological data set and a molecular phylogeny to describe the morphological diversification of anoles from northwestern South America, a region with the highest anole diversity on a mainland. We describe morphological diversity as summarized by ten morphotypes, defined mainly by body size, limb proportions, and subdigital lamellae. We show that some morphotypes are limited to forested lowlands and others to Andean highlands; by contrast, Anolis assemblages from tropical rainforests are comprised of the same four morphotypes. We demonstrate that morphological diversification followed a pattern of adaptive radiation across a landscape of adaptive peaks. Our results are consistent with the most recent hypothesis of convergence stated for Caribbean radiation, and demonstrate convergence between mainland morphotypes and Caribbean ecomorphs, which suggests that common processes are driving both radiations. © 2016 The Linnean Society of London
ISSN:0024-4082
1096-3642
DOI:10.1111/zoj.12325