Shifting Correlation Between Earthquakes and Electromagnetic Signals: A Case Study of the 2013 Minxian-Zhangxian M sub(L) 6.5 (M sub(W) 6.1) Earthquake in Gansu, China
The shifting correlation method (SCM) is proposed for statistical analysis of the correlation between earthquake sequences and electromagnetic signal sequences. In this method, the two different sequences were treated in units of 1 day. With the earthquake sequences fixed, the electromagnetic sequen...
Gespeichert in:
Veröffentlicht in: | Pure and applied geophysics 2016-01, Vol.173 (1), p.269-284 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The shifting correlation method (SCM) is proposed for statistical analysis of the correlation between earthquake sequences and electromagnetic signal sequences. In this method, the two different sequences were treated in units of 1 day. With the earthquake sequences fixed, the electromagnetic sequences were continuously shifted on the time axis, and the linear correlation coefficients between the two were calculated. In this way, the frequency and temporal distribution characteristics of potential seismic electromagnetic signals in the pre, co, and post-seismic stages were analyzed. In the work discussed in this paper, we first verified the effectiveness of the SCM and found it could accurately identify indistinct related signals by use of sufficient samples of synthetic data. Then, as a case study, the method was used for analysis of electromagnetic monitoring data from the Minxian-Zhangxian M sub(L) 6.5 (M sub(W) 6.1) earthquake. The results showed: (1) there seems to be a strong correlation between earthquakes and electromagnetic signals at different frequency in the pre, co, and post-seismic stages, with correlation coefficients in the range 0.4-0.7. The correlation was positive and negative before and after the earthquakes, respectively. (2) The electromagnetic signals related to the earthquakes might appear 23 days before and last for 10 days after the shocks. (3) To some extent, the occurrence time and frequency band of seismic electromagnetic signals are different at different stations. We inferred that the differences were related to resistivity, active tectonics, and seismogenic structure. |
---|---|
ISSN: | 0033-4553 1420-9136 |
DOI: | 10.1007/s00024-015-1055-4 |