Dynamic rupture models of earthquakes on the Bartlett Springs Fault, Northern California

The Bartlett Springs Fault (BSF), the easternmost branch of the northern San Andreas Fault system, creeps along much of its length. Geodetic data for the BSF are sparse, and surface creep rates are generally poorly constrained. The two existing geodetic slip rate inversions resolve at least one lock...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2015-06, Vol.42 (11), p.4343-4349
Hauptverfasser: Lozos, Julian C., Harris, Ruth A., Murray, Jessica R., Lienkaemper, James J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4349
container_issue 11
container_start_page 4343
container_title Geophysical research letters
container_volume 42
creator Lozos, Julian C.
Harris, Ruth A.
Murray, Jessica R.
Lienkaemper, James J.
description The Bartlett Springs Fault (BSF), the easternmost branch of the northern San Andreas Fault system, creeps along much of its length. Geodetic data for the BSF are sparse, and surface creep rates are generally poorly constrained. The two existing geodetic slip rate inversions resolve at least one locked patch within the creeping zones. We use the 3‐D finite element code FaultMod to conduct dynamic rupture models based on both geodetic inversions, in order to determine the ability of rupture to propagate into the creeping regions, as well as to assess possible magnitudes for BSF ruptures. For both sets of models, we find that the distribution of aseismic creep limits the extent of coseismic rupture, due to the contrast in frictional properties between the locked and creeping regions. Key Points Rupture on the BSF is confined to locked patches The BSF can still produce strong earthquakes Geodetic inversions can be used to inform rupture model setup
doi_str_mv 10.1002/2015GL063802
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808374264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1910849187</sourcerecordid><originalsourceid>FETCH-LOGICAL-a6357-a6b06d06047bcdccaf407300a095ec97781a7e1b65528d1dce2bf1e929c558733</originalsourceid><addsrcrecordid>eNqF0UtvEzEQAGALgURoufEDLHHh0NCxvfasj5DQgBoKIrxuluOdpdtudlN7VyX_vo6CUMWhXPzSN-Oxh7EXAl4LAHkqQejFEowqQT5iE2GLYloC4GM2AbB5LdE8Zc9SugIABUpM2M_5rvObJvA4bocxEt_0FbWJ9zUnH4fLm9FfU952fLgk_jYftTQMfLWNTfcr8TM_tsMJv-gzpdjxmW-buo9d44_Zk9q3iZ7_mY_Yt7N3X2fvp8tPiw-zN8upN0pjHtdgKjBQ4DpUIfi6AFQAHqymYBFL4ZHE2mgty0pUgeS6FmSlDVqXqNQRe3XIu439zUhpcJsmBWpb31E_JidKKBUW0hT_pwgWDSKKTF_-Q6_6MXb5IU5YAWVhRb78IWWsNAKN3Fd4clAh9ilFql3-vI2POyfA7fvm7vctc3ngt01LuwetW3xZagViX8n0ENSkgX7_DfLx2hlUqN2Pi4WT38_nq4-fV26u7gDsJ6W3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692617623</pqid></control><display><type>article</type><title>Dynamic rupture models of earthquakes on the Bartlett Springs Fault, Northern California</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Lozos, Julian C. ; Harris, Ruth A. ; Murray, Jessica R. ; Lienkaemper, James J.</creator><creatorcontrib>Lozos, Julian C. ; Harris, Ruth A. ; Murray, Jessica R. ; Lienkaemper, James J.</creatorcontrib><description>The Bartlett Springs Fault (BSF), the easternmost branch of the northern San Andreas Fault system, creeps along much of its length. Geodetic data for the BSF are sparse, and surface creep rates are generally poorly constrained. The two existing geodetic slip rate inversions resolve at least one locked patch within the creeping zones. We use the 3‐D finite element code FaultMod to conduct dynamic rupture models based on both geodetic inversions, in order to determine the ability of rupture to propagate into the creeping regions, as well as to assess possible magnitudes for BSF ruptures. For both sets of models, we find that the distribution of aseismic creep limits the extent of coseismic rupture, due to the contrast in frictional properties between the locked and creeping regions. Key Points Rupture on the BSF is confined to locked patches The BSF can still produce strong earthquakes Geodetic inversions can be used to inform rupture model setup</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2015GL063802</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>aseismic creep ; Bartlett Springs Fault ; Constraints ; Creep (materials) ; Data ; dynamic modeling ; Dynamic tests ; Dynamics ; earthquake rupture ; Earthquakes ; fault friction ; Faults ; Finite element method ; Inversions ; Length ; Mathematical analysis ; Mathematical models ; northern San Andreas system ; Properties ; Regions ; Rupture ; Rupturing ; San Andreas Fault ; Seismic activity ; Seismic phenomena ; Slip ; Solifluction ; Springs ; Three dimensional models</subject><ispartof>Geophysical research letters, 2015-06, Vol.42 (11), p.4343-4349</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><rights>Copyright Blackwell Publishing Ltd. Jun 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a6357-a6b06d06047bcdccaf407300a095ec97781a7e1b65528d1dce2bf1e929c558733</citedby><cites>FETCH-LOGICAL-a6357-a6b06d06047bcdccaf407300a095ec97781a7e1b65528d1dce2bf1e929c558733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015GL063802$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015GL063802$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11494,27903,27904,45553,45554,46387,46446,46811,46870</link.rule.ids></links><search><creatorcontrib>Lozos, Julian C.</creatorcontrib><creatorcontrib>Harris, Ruth A.</creatorcontrib><creatorcontrib>Murray, Jessica R.</creatorcontrib><creatorcontrib>Lienkaemper, James J.</creatorcontrib><title>Dynamic rupture models of earthquakes on the Bartlett Springs Fault, Northern California</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>The Bartlett Springs Fault (BSF), the easternmost branch of the northern San Andreas Fault system, creeps along much of its length. Geodetic data for the BSF are sparse, and surface creep rates are generally poorly constrained. The two existing geodetic slip rate inversions resolve at least one locked patch within the creeping zones. We use the 3‐D finite element code FaultMod to conduct dynamic rupture models based on both geodetic inversions, in order to determine the ability of rupture to propagate into the creeping regions, as well as to assess possible magnitudes for BSF ruptures. For both sets of models, we find that the distribution of aseismic creep limits the extent of coseismic rupture, due to the contrast in frictional properties between the locked and creeping regions. Key Points Rupture on the BSF is confined to locked patches The BSF can still produce strong earthquakes Geodetic inversions can be used to inform rupture model setup</description><subject>aseismic creep</subject><subject>Bartlett Springs Fault</subject><subject>Constraints</subject><subject>Creep (materials)</subject><subject>Data</subject><subject>dynamic modeling</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>earthquake rupture</subject><subject>Earthquakes</subject><subject>fault friction</subject><subject>Faults</subject><subject>Finite element method</subject><subject>Inversions</subject><subject>Length</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>northern San Andreas system</subject><subject>Properties</subject><subject>Regions</subject><subject>Rupture</subject><subject>Rupturing</subject><subject>San Andreas Fault</subject><subject>Seismic activity</subject><subject>Seismic phenomena</subject><subject>Slip</subject><subject>Solifluction</subject><subject>Springs</subject><subject>Three dimensional models</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqF0UtvEzEQAGALgURoufEDLHHh0NCxvfasj5DQgBoKIrxuluOdpdtudlN7VyX_vo6CUMWhXPzSN-Oxh7EXAl4LAHkqQejFEowqQT5iE2GLYloC4GM2AbB5LdE8Zc9SugIABUpM2M_5rvObJvA4bocxEt_0FbWJ9zUnH4fLm9FfU952fLgk_jYftTQMfLWNTfcr8TM_tsMJv-gzpdjxmW-buo9d44_Zk9q3iZ7_mY_Yt7N3X2fvp8tPiw-zN8upN0pjHtdgKjBQ4DpUIfi6AFQAHqymYBFL4ZHE2mgty0pUgeS6FmSlDVqXqNQRe3XIu439zUhpcJsmBWpb31E_JidKKBUW0hT_pwgWDSKKTF_-Q6_6MXb5IU5YAWVhRb78IWWsNAKN3Fd4clAh9ilFql3-vI2POyfA7fvm7vctc3ngt01LuwetW3xZagViX8n0ENSkgX7_DfLx2hlUqN2Pi4WT38_nq4-fV26u7gDsJ6W3</recordid><startdate>20150616</startdate><enddate>20150616</enddate><creator>Lozos, Julian C.</creator><creator>Harris, Ruth A.</creator><creator>Murray, Jessica R.</creator><creator>Lienkaemper, James J.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20150616</creationdate><title>Dynamic rupture models of earthquakes on the Bartlett Springs Fault, Northern California</title><author>Lozos, Julian C. ; Harris, Ruth A. ; Murray, Jessica R. ; Lienkaemper, James J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a6357-a6b06d06047bcdccaf407300a095ec97781a7e1b65528d1dce2bf1e929c558733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>aseismic creep</topic><topic>Bartlett Springs Fault</topic><topic>Constraints</topic><topic>Creep (materials)</topic><topic>Data</topic><topic>dynamic modeling</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>earthquake rupture</topic><topic>Earthquakes</topic><topic>fault friction</topic><topic>Faults</topic><topic>Finite element method</topic><topic>Inversions</topic><topic>Length</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>northern San Andreas system</topic><topic>Properties</topic><topic>Regions</topic><topic>Rupture</topic><topic>Rupturing</topic><topic>San Andreas Fault</topic><topic>Seismic activity</topic><topic>Seismic phenomena</topic><topic>Slip</topic><topic>Solifluction</topic><topic>Springs</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lozos, Julian C.</creatorcontrib><creatorcontrib>Harris, Ruth A.</creatorcontrib><creatorcontrib>Murray, Jessica R.</creatorcontrib><creatorcontrib>Lienkaemper, James J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lozos, Julian C.</au><au>Harris, Ruth A.</au><au>Murray, Jessica R.</au><au>Lienkaemper, James J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic rupture models of earthquakes on the Bartlett Springs Fault, Northern California</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2015-06-16</date><risdate>2015</risdate><volume>42</volume><issue>11</issue><spage>4343</spage><epage>4349</epage><pages>4343-4349</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>The Bartlett Springs Fault (BSF), the easternmost branch of the northern San Andreas Fault system, creeps along much of its length. Geodetic data for the BSF are sparse, and surface creep rates are generally poorly constrained. The two existing geodetic slip rate inversions resolve at least one locked patch within the creeping zones. We use the 3‐D finite element code FaultMod to conduct dynamic rupture models based on both geodetic inversions, in order to determine the ability of rupture to propagate into the creeping regions, as well as to assess possible magnitudes for BSF ruptures. For both sets of models, we find that the distribution of aseismic creep limits the extent of coseismic rupture, due to the contrast in frictional properties between the locked and creeping regions. Key Points Rupture on the BSF is confined to locked patches The BSF can still produce strong earthquakes Geodetic inversions can be used to inform rupture model setup</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015GL063802</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2015-06, Vol.42 (11), p.4343-4349
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_1808374264
source Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley-Blackwell AGU Digital Library
subjects aseismic creep
Bartlett Springs Fault
Constraints
Creep (materials)
Data
dynamic modeling
Dynamic tests
Dynamics
earthquake rupture
Earthquakes
fault friction
Faults
Finite element method
Inversions
Length
Mathematical analysis
Mathematical models
northern San Andreas system
Properties
Regions
Rupture
Rupturing
San Andreas Fault
Seismic activity
Seismic phenomena
Slip
Solifluction
Springs
Three dimensional models
title Dynamic rupture models of earthquakes on the Bartlett Springs Fault, Northern California
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A21%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20rupture%20models%20of%20earthquakes%20on%20the%20Bartlett%20Springs%20Fault,%20Northern%20California&rft.jtitle=Geophysical%20research%20letters&rft.au=Lozos,%20Julian%20C.&rft.date=2015-06-16&rft.volume=42&rft.issue=11&rft.spage=4343&rft.epage=4349&rft.pages=4343-4349&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2015GL063802&rft_dat=%3Cproquest_cross%3E1910849187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692617623&rft_id=info:pmid/&rfr_iscdi=true