Dynamic rupture models of earthquakes on the Bartlett Springs Fault, Northern California
The Bartlett Springs Fault (BSF), the easternmost branch of the northern San Andreas Fault system, creeps along much of its length. Geodetic data for the BSF are sparse, and surface creep rates are generally poorly constrained. The two existing geodetic slip rate inversions resolve at least one lock...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2015-06, Vol.42 (11), p.4343-4349 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4349 |
---|---|
container_issue | 11 |
container_start_page | 4343 |
container_title | Geophysical research letters |
container_volume | 42 |
creator | Lozos, Julian C. Harris, Ruth A. Murray, Jessica R. Lienkaemper, James J. |
description | The Bartlett Springs Fault (BSF), the easternmost branch of the northern San Andreas Fault system, creeps along much of its length. Geodetic data for the BSF are sparse, and surface creep rates are generally poorly constrained. The two existing geodetic slip rate inversions resolve at least one locked patch within the creeping zones. We use the 3‐D finite element code FaultMod to conduct dynamic rupture models based on both geodetic inversions, in order to determine the ability of rupture to propagate into the creeping regions, as well as to assess possible magnitudes for BSF ruptures. For both sets of models, we find that the distribution of aseismic creep limits the extent of coseismic rupture, due to the contrast in frictional properties between the locked and creeping regions.
Key Points
Rupture on the BSF is confined to locked patches
The BSF can still produce strong earthquakes
Geodetic inversions can be used to inform rupture model setup |
doi_str_mv | 10.1002/2015GL063802 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808374264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1910849187</sourcerecordid><originalsourceid>FETCH-LOGICAL-a6357-a6b06d06047bcdccaf407300a095ec97781a7e1b65528d1dce2bf1e929c558733</originalsourceid><addsrcrecordid>eNqF0UtvEzEQAGALgURoufEDLHHh0NCxvfasj5DQgBoKIrxuluOdpdtudlN7VyX_vo6CUMWhXPzSN-Oxh7EXAl4LAHkqQejFEowqQT5iE2GLYloC4GM2AbB5LdE8Zc9SugIABUpM2M_5rvObJvA4bocxEt_0FbWJ9zUnH4fLm9FfU952fLgk_jYftTQMfLWNTfcr8TM_tsMJv-gzpdjxmW-buo9d44_Zk9q3iZ7_mY_Yt7N3X2fvp8tPiw-zN8upN0pjHtdgKjBQ4DpUIfi6AFQAHqymYBFL4ZHE2mgty0pUgeS6FmSlDVqXqNQRe3XIu439zUhpcJsmBWpb31E_JidKKBUW0hT_pwgWDSKKTF_-Q6_6MXb5IU5YAWVhRb78IWWsNAKN3Fd4clAh9ilFql3-vI2POyfA7fvm7vctc3ngt01LuwetW3xZagViX8n0ENSkgX7_DfLx2hlUqN2Pi4WT38_nq4-fV26u7gDsJ6W3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692617623</pqid></control><display><type>article</type><title>Dynamic rupture models of earthquakes on the Bartlett Springs Fault, Northern California</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Lozos, Julian C. ; Harris, Ruth A. ; Murray, Jessica R. ; Lienkaemper, James J.</creator><creatorcontrib>Lozos, Julian C. ; Harris, Ruth A. ; Murray, Jessica R. ; Lienkaemper, James J.</creatorcontrib><description>The Bartlett Springs Fault (BSF), the easternmost branch of the northern San Andreas Fault system, creeps along much of its length. Geodetic data for the BSF are sparse, and surface creep rates are generally poorly constrained. The two existing geodetic slip rate inversions resolve at least one locked patch within the creeping zones. We use the 3‐D finite element code FaultMod to conduct dynamic rupture models based on both geodetic inversions, in order to determine the ability of rupture to propagate into the creeping regions, as well as to assess possible magnitudes for BSF ruptures. For both sets of models, we find that the distribution of aseismic creep limits the extent of coseismic rupture, due to the contrast in frictional properties between the locked and creeping regions.
Key Points
Rupture on the BSF is confined to locked patches
The BSF can still produce strong earthquakes
Geodetic inversions can be used to inform rupture model setup</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2015GL063802</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>aseismic creep ; Bartlett Springs Fault ; Constraints ; Creep (materials) ; Data ; dynamic modeling ; Dynamic tests ; Dynamics ; earthquake rupture ; Earthquakes ; fault friction ; Faults ; Finite element method ; Inversions ; Length ; Mathematical analysis ; Mathematical models ; northern San Andreas system ; Properties ; Regions ; Rupture ; Rupturing ; San Andreas Fault ; Seismic activity ; Seismic phenomena ; Slip ; Solifluction ; Springs ; Three dimensional models</subject><ispartof>Geophysical research letters, 2015-06, Vol.42 (11), p.4343-4349</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><rights>Copyright Blackwell Publishing Ltd. Jun 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a6357-a6b06d06047bcdccaf407300a095ec97781a7e1b65528d1dce2bf1e929c558733</citedby><cites>FETCH-LOGICAL-a6357-a6b06d06047bcdccaf407300a095ec97781a7e1b65528d1dce2bf1e929c558733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015GL063802$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015GL063802$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11494,27903,27904,45553,45554,46387,46446,46811,46870</link.rule.ids></links><search><creatorcontrib>Lozos, Julian C.</creatorcontrib><creatorcontrib>Harris, Ruth A.</creatorcontrib><creatorcontrib>Murray, Jessica R.</creatorcontrib><creatorcontrib>Lienkaemper, James J.</creatorcontrib><title>Dynamic rupture models of earthquakes on the Bartlett Springs Fault, Northern California</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>The Bartlett Springs Fault (BSF), the easternmost branch of the northern San Andreas Fault system, creeps along much of its length. Geodetic data for the BSF are sparse, and surface creep rates are generally poorly constrained. The two existing geodetic slip rate inversions resolve at least one locked patch within the creeping zones. We use the 3‐D finite element code FaultMod to conduct dynamic rupture models based on both geodetic inversions, in order to determine the ability of rupture to propagate into the creeping regions, as well as to assess possible magnitudes for BSF ruptures. For both sets of models, we find that the distribution of aseismic creep limits the extent of coseismic rupture, due to the contrast in frictional properties between the locked and creeping regions.
Key Points
Rupture on the BSF is confined to locked patches
The BSF can still produce strong earthquakes
Geodetic inversions can be used to inform rupture model setup</description><subject>aseismic creep</subject><subject>Bartlett Springs Fault</subject><subject>Constraints</subject><subject>Creep (materials)</subject><subject>Data</subject><subject>dynamic modeling</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>earthquake rupture</subject><subject>Earthquakes</subject><subject>fault friction</subject><subject>Faults</subject><subject>Finite element method</subject><subject>Inversions</subject><subject>Length</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>northern San Andreas system</subject><subject>Properties</subject><subject>Regions</subject><subject>Rupture</subject><subject>Rupturing</subject><subject>San Andreas Fault</subject><subject>Seismic activity</subject><subject>Seismic phenomena</subject><subject>Slip</subject><subject>Solifluction</subject><subject>Springs</subject><subject>Three dimensional models</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqF0UtvEzEQAGALgURoufEDLHHh0NCxvfasj5DQgBoKIrxuluOdpdtudlN7VyX_vo6CUMWhXPzSN-Oxh7EXAl4LAHkqQejFEowqQT5iE2GLYloC4GM2AbB5LdE8Zc9SugIABUpM2M_5rvObJvA4bocxEt_0FbWJ9zUnH4fLm9FfU952fLgk_jYftTQMfLWNTfcr8TM_tsMJv-gzpdjxmW-buo9d44_Zk9q3iZ7_mY_Yt7N3X2fvp8tPiw-zN8upN0pjHtdgKjBQ4DpUIfi6AFQAHqymYBFL4ZHE2mgty0pUgeS6FmSlDVqXqNQRe3XIu439zUhpcJsmBWpb31E_JidKKBUW0hT_pwgWDSKKTF_-Q6_6MXb5IU5YAWVhRb78IWWsNAKN3Fd4clAh9ilFql3-vI2POyfA7fvm7vctc3ngt01LuwetW3xZagViX8n0ENSkgX7_DfLx2hlUqN2Pi4WT38_nq4-fV26u7gDsJ6W3</recordid><startdate>20150616</startdate><enddate>20150616</enddate><creator>Lozos, Julian C.</creator><creator>Harris, Ruth A.</creator><creator>Murray, Jessica R.</creator><creator>Lienkaemper, James J.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>20150616</creationdate><title>Dynamic rupture models of earthquakes on the Bartlett Springs Fault, Northern California</title><author>Lozos, Julian C. ; Harris, Ruth A. ; Murray, Jessica R. ; Lienkaemper, James J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a6357-a6b06d06047bcdccaf407300a095ec97781a7e1b65528d1dce2bf1e929c558733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>aseismic creep</topic><topic>Bartlett Springs Fault</topic><topic>Constraints</topic><topic>Creep (materials)</topic><topic>Data</topic><topic>dynamic modeling</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>earthquake rupture</topic><topic>Earthquakes</topic><topic>fault friction</topic><topic>Faults</topic><topic>Finite element method</topic><topic>Inversions</topic><topic>Length</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>northern San Andreas system</topic><topic>Properties</topic><topic>Regions</topic><topic>Rupture</topic><topic>Rupturing</topic><topic>San Andreas Fault</topic><topic>Seismic activity</topic><topic>Seismic phenomena</topic><topic>Slip</topic><topic>Solifluction</topic><topic>Springs</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lozos, Julian C.</creatorcontrib><creatorcontrib>Harris, Ruth A.</creatorcontrib><creatorcontrib>Murray, Jessica R.</creatorcontrib><creatorcontrib>Lienkaemper, James J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lozos, Julian C.</au><au>Harris, Ruth A.</au><au>Murray, Jessica R.</au><au>Lienkaemper, James J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic rupture models of earthquakes on the Bartlett Springs Fault, Northern California</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2015-06-16</date><risdate>2015</risdate><volume>42</volume><issue>11</issue><spage>4343</spage><epage>4349</epage><pages>4343-4349</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>The Bartlett Springs Fault (BSF), the easternmost branch of the northern San Andreas Fault system, creeps along much of its length. Geodetic data for the BSF are sparse, and surface creep rates are generally poorly constrained. The two existing geodetic slip rate inversions resolve at least one locked patch within the creeping zones. We use the 3‐D finite element code FaultMod to conduct dynamic rupture models based on both geodetic inversions, in order to determine the ability of rupture to propagate into the creeping regions, as well as to assess possible magnitudes for BSF ruptures. For both sets of models, we find that the distribution of aseismic creep limits the extent of coseismic rupture, due to the contrast in frictional properties between the locked and creeping regions.
Key Points
Rupture on the BSF is confined to locked patches
The BSF can still produce strong earthquakes
Geodetic inversions can be used to inform rupture model setup</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015GL063802</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2015-06, Vol.42 (11), p.4343-4349 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808374264 |
source | Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley-Blackwell AGU Digital Library |
subjects | aseismic creep Bartlett Springs Fault Constraints Creep (materials) Data dynamic modeling Dynamic tests Dynamics earthquake rupture Earthquakes fault friction Faults Finite element method Inversions Length Mathematical analysis Mathematical models northern San Andreas system Properties Regions Rupture Rupturing San Andreas Fault Seismic activity Seismic phenomena Slip Solifluction Springs Three dimensional models |
title | Dynamic rupture models of earthquakes on the Bartlett Springs Fault, Northern California |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A21%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20rupture%20models%20of%20earthquakes%20on%20the%20Bartlett%20Springs%20Fault,%20Northern%20California&rft.jtitle=Geophysical%20research%20letters&rft.au=Lozos,%20Julian%20C.&rft.date=2015-06-16&rft.volume=42&rft.issue=11&rft.spage=4343&rft.epage=4349&rft.pages=4343-4349&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2015GL063802&rft_dat=%3Cproquest_cross%3E1910849187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692617623&rft_id=info:pmid/&rfr_iscdi=true |