Seismic Imaging of a Bimaterial Interface Along the Hayward Fault, CA, with Fault Zone Head Waves and Direct P Arrivals

We observe fault zone head waves (FZHW) that are generated by and propagate along a roughly 80 km section of the Hayward fault in the San Francisco Bay area. Moveout values between the arrival times of FZHW and direct P waves are used to obtain average P-wave velocity contrasts across different sect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pure and applied geophysics 2014-11, Vol.171 (11), p.2993-3011
Hauptverfasser: Allam, A. A., Ben-Zion, Y., Peng, Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We observe fault zone head waves (FZHW) that are generated by and propagate along a roughly 80 km section of the Hayward fault in the San Francisco Bay area. Moveout values between the arrival times of FZHW and direct P waves are used to obtain average P-wave velocity contrasts across different sections of the fault. The results are based on waveforms generated by more than 5,800 earthquakes and recorded at up to 12 stations of the Berkeley digital seismic network (BDSN) and the Northern California seismic network (NCSN). Robust identification of FZHW requires the combination of multiple techniques due to the diverse instrumentation of the BDSN and NCSN. For single-component short-period instruments, FZHW are identified by examining sets of waveforms from both sides of the fault, and finding on one (the slow) side emergent reversed-polarity arrivals before the direct P waves. For three-component broadband and strong-motion instruments, the FZHW are identified with polarization analysis that detects early arrivals from the fault direction before the regular body waves which have polarizations along the source-receiver backazimuth. The results indicate average velocity contrasts of 3–8 % along the Hayward fault, with the southwest side having faster P wave velocities in agreement with tomographic images. A systematic moveout between the FZHW and direct P waves for about a 80 km long fault section suggests a single continuous interface in the seismogenic zone over that distance. We observe some complexities near the junction with the Calaveras fault in the SE-most portion and near the city of Oakland. Regions giving rise to variable FZHW arrival times can be correlated to first order with the presence of lithological complexity such as slivers of high-velocity metamorphic serpentinized rocks and relatively distributed seismicity. The seismic velocity contrast and geological complexity have important implications for earthquake and rupture dynamics of the Hayward fault, including a statistically preferred propagation direction of earthquake ruptures to the SE.
ISSN:0033-4553
1420-9136
DOI:10.1007/s00024-014-0784-0