Comparing magnetic and magmatic fabrics to constrain the magma flow record in La Gloria pluton, central Chile
This contribution illustrates a case study of a pluton (La Gloria pluton; LGP) where magnetic and magmatic fabrics are locally decoupled. We compare the magmatic fabric with the available magnetic fabric data to explore their abilities and elucidate the magma flow record of LGP. Results indicate tha...
Gespeichert in:
Veröffentlicht in: | Journal of structural geology 2014-12, Vol.69, p.32-46 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This contribution illustrates a case study of a pluton (La Gloria pluton; LGP) where magnetic and magmatic fabrics are locally decoupled. We compare the magmatic fabric with the available magnetic fabric data to explore their abilities and elucidate the magma flow record of LGP. Results indicate that magnetic (controlled by multi-domain magnetite) and magmatic fabrics are generally consistent throughout LGP. Foliations define an axisymmetric pattern that gradually changes from vertical near lateral margins to less steep in the pluton interior, whereas lineations are subhorizontal following the elongation direction of the pluton. However, samples at the pluton center show marked differences between both fabrics: magnetic fabrics indicate subhorizontal magnetic lineations and foliations, and magmatic fabrics indicate subvertical lineations and foliations.
Both magnetic and magmatic fabrics are interpreted to record strain caused by magma flow during thermal convection and lateral magma propagation at the transition between low and high crystallinity stages. We suggest that fabrics acquisition and consistency were determined by shear conditions (pure/simple shear rates ratio) and the orientation of the magma flow direction with respect to a rigid boundary (critical crystalline region) of the pluton. Magmatic fabric differs at the center of the pluton because pure shear is dominant and ascendant flows are orthogonal to the horizontal rigid boundary. LGP represents a whole-scale partly molten magma reservoir, where both thermal convection and lateral propagation of the magma are recorded simultaneously. This study highlights the importance of characterizing both fabrics to properly interpret magma flow recorded in plutons.
•Magnetic and magmatic fabrics are consistent in LGP, except at the center.•Both fabrics record the last shear event produced by magma convection.•Both fabrics differ at the center of the pluton, where pure shear is dominant.•Both fabrics differ where magma flow is orthogonal to critical crystallinity zone.•Magnetic fabric records the position of the critical crystallinity zone (rigid). |
---|---|
ISSN: | 0191-8141 1873-1201 |
DOI: | 10.1016/j.jsg.2014.09.015 |