Rapid detection of arsenic minerals using portable broadband NQR
The remote real‐time detection of specific arsenic species would significantly benefit in minerals processing to mitigate the release of arsenic into aquatic environments and aid in selective mining. At present, there are no technologies available to detect arsenic minerals in bulk volumes outside o...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2014-10, Vol.41 (19), p.6765-6771 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The remote real‐time detection of specific arsenic species would significantly benefit in minerals processing to mitigate the release of arsenic into aquatic environments and aid in selective mining. At present, there are no technologies available to detect arsenic minerals in bulk volumes outside of laboratories. Here we report on the first room‐temperature broadband 75As nuclear quadrupole resonance (NQR) detection of common and abundant arsenic ores in the Earth crust using a large sample (0.78 L) volume prototype sensor. Broadband excitation aids in detection of natural minerals with low crystallinity. We briefly discuss how the proposed NQR detector could be employed in mining operations.
Key Points
Transformation of chemical analysis method to geophysical detection technologyFirst NQR ore characterization of selected arsenic minerals in bulk volumesBroadband NQR sensor to detect arsenic minerals with low crystallinity |
---|---|
ISSN: | 0094-8276 1944-8007 |
DOI: | 10.1002/2014GL061386 |