Reduced sediment melting at 7.5–12 GPa: phase relations, geochemical signals and diamond nucleation
Melting of carbonated sediment in the presence of graphite or diamond was experimentally investigated at 7.5–12 GPa and 800–1600 °C in a multianvil apparatus. Two starting materials similar to GLOSS of Plank and Langmuir (Chem Geol 145:325–394, 1998 ) were prepared from oxides, carbonates, hydroxide...
Gespeichert in:
Veröffentlicht in: | Contributions to mineralogy and petrology 2015-08, Vol.170 (2), p.1-25, Article 18 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Melting of carbonated sediment in the presence of graphite or diamond was experimentally investigated at 7.5–12 GPa and 800–1600 °C in a multianvil apparatus. Two starting materials similar to GLOSS of Plank and Langmuir (Chem Geol 145:325–394,
1998
) were prepared from oxides, carbonates, hydroxides and graphite. One mixture (Na-gloss) was identical in major element composition to GLOSS, and the other was poorer in Na and richer in K (K-gloss). Both starting mixtures contained ~6 wt% CO
2
and 7 wt% H
2
O and were doped at a ~100 ppm level with a number of trace elements, including REE, LILE and HFSE. The near-solidus mineral assemblage contained a silica polymorph (coesite or stishovite), garnet, kyanite, clinopyroxene, carbonates (aragonite and magnesite–siderite solid solution), zircon, rutile, bearthite and hydrous phases (phengite and lawsonite at 10 GPa). Hydrous phases disappear at ~900 °C, and carbonates persist up to 1000–1100 °C. At temperatures >1200 °C, the mineral assemblage consists of coesite or stishovite, kyanite and garnet. Clinopyroxene stability depends strongly on the Na content in the starting mixture; it remains in the Na-gloss composition up to 1600 °C at 12 GPa, but was not observed in K-gloss experiments above 1200 °C. The composition of melt or fluid changes gradually with increasing temperature from hydrous carbonate-rich (10) and decrease to ~1 for HREE. All HFSE are strongly incompatible in bearthite. In contrast, Ta, Nb, Zr and Hf are moderately to strongly compatible in ZrSiO
4
and TiO
2
phases. Based on the obtained partition coefficients, the composition |
---|---|
ISSN: | 0010-7999 1432-0967 |
DOI: | 10.1007/s00410-015-1166-z |