Evaluating information retrieval using document popularity: An implementation on MapReduce

Over the last few years, one major research direction of information retrieval includes user behaviour prediction. For that reason many models have been proposed aiming at the accurate evaluation of information retrieval systems and the best prediction of web search users׳ behaviour. In this paper w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering applications of artificial intelligence 2016-05, Vol.51, p.16-23
Hauptverfasser: Evangelopoulos, Xenophon, Giannakouris-Salalidis, Victor, Iliadis, Lazaros, Makris, Christos, Plegas, Yannis, Plerou, Antonia, Sioutas, Spyros
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Over the last few years, one major research direction of information retrieval includes user behaviour prediction. For that reason many models have been proposed aiming at the accurate evaluation of information retrieval systems and the best prediction of web search users׳ behaviour. In this paper we propose a new evaluation metric for information retrieval systems which employs two relevance factors; a relevance judgement grade and a popularity grade that represents users׳ vote for a document. We show that this new metric performs better than other evaluation metrics when expressing user behaviour. Moreover, in order to test the performance of our metric on different and scalable ranking algorithms, we develop a pairwise text similarity algorithm using cosine similarity, implemented on the MapReduce model, and then perform experiments on rankings generated by the algorithm.
ISSN:0952-1976
1873-6769
DOI:10.1016/j.engappai.2016.01.023