From r-spin intersection numbers to Hodge integrals
A bstract Generalized Kontsevich Matrix Model (GKMM) with a certain given potential is the partition function of r -spin intersection numbers. We represent this GKMM in terms of fermions and expand it in terms of the Schur polynomials by boson-fermion correspondence, and link it with a Hurwitz parti...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2016-01, Vol.2016 (1), p.1-51, Article 15 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
bstract
Generalized Kontsevich Matrix Model (GKMM) with a certain given potential is the partition function of
r
-spin intersection numbers. We represent this GKMM in terms of fermions and expand it in terms of the Schur polynomials by boson-fermion correspondence, and link it with a Hurwitz partition function and a Hodge partition by operators in a
GL
^
∞
group. Then, from a
W
1+∞
constraint of the partition function of
r
-spin intersection numbers, we get a
W
1+∞
constraint for the Hodge partition function. The
W
1+∞
constraint completely determines the Schur polynomials expansion of the Hodge partition function. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP01(2016)015 |