From r-spin intersection numbers to Hodge integrals

A bstract Generalized Kontsevich Matrix Model (GKMM) with a certain given potential is the partition function of r -spin intersection numbers. We represent this GKMM in terms of fermions and expand it in terms of the Schur polynomials by boson-fermion correspondence, and link it with a Hurwitz parti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2016-01, Vol.2016 (1), p.1-51, Article 15
Hauptverfasser: Ding, Xiang-Mao, Li, Yuping, Meng, Lingxian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract Generalized Kontsevich Matrix Model (GKMM) with a certain given potential is the partition function of r -spin intersection numbers. We represent this GKMM in terms of fermions and expand it in terms of the Schur polynomials by boson-fermion correspondence, and link it with a Hurwitz partition function and a Hodge partition by operators in a GL ^ ∞ group. Then, from a W 1+∞ constraint of the partition function of r -spin intersection numbers, we get a W 1+∞ constraint for the Hodge partition function. The W 1+∞ constraint completely determines the Schur polynomials expansion of the Hodge partition function.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP01(2016)015