On Kinetic Delaunay Triangulations: A Near-Quadratic Bound for Unit Speed Motions
Let P be a collection of n points in the plane, each moving along some straight line at unit speed. We obtain an almost tight upper bound of O ( n 2+ϵ ), for any ϵ > 0, on the maximum number of discrete changes that the Delaunay triangulation DT( P ) of P experiences during this motion. Our analy...
Gespeichert in:
Veröffentlicht in: | Journal of the ACM 2015-06, Vol.62 (3), p.1-85 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
P
be a collection of
n
points in the plane, each moving along some straight line at unit speed. We obtain an almost tight upper bound of
O
(
n
2+ϵ
), for any ϵ > 0, on the maximum number of discrete changes that the Delaunay triangulation DT(
P
) of
P
experiences during this motion. Our analysis is cast in a purely topological setting, where we only assume that (i) any four points can be co-circular at most three times, and (ii) no triple of points can be collinear more than twice; these assumptions hold for unit speed motions. |
---|---|
ISSN: | 0004-5411 1557-735X |
DOI: | 10.1145/2746228 |