On Kinetic Delaunay Triangulations: A Near-Quadratic Bound for Unit Speed Motions

Let P be a collection of n points in the plane, each moving along some straight line at unit speed. We obtain an almost tight upper bound of O ( n 2+ϵ ), for any ϵ > 0, on the maximum number of discrete changes that the Delaunay triangulation DT( P ) of P experiences during this motion. Our analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the ACM 2015-06, Vol.62 (3), p.1-85
1. Verfasser: Rubin, Natan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let P be a collection of n points in the plane, each moving along some straight line at unit speed. We obtain an almost tight upper bound of O ( n 2+ϵ ), for any ϵ > 0, on the maximum number of discrete changes that the Delaunay triangulation DT( P ) of P experiences during this motion. Our analysis is cast in a purely topological setting, where we only assume that (i) any four points can be co-circular at most three times, and (ii) no triple of points can be collinear more than twice; these assumptions hold for unit speed motions.
ISSN:0004-5411
1557-735X
DOI:10.1145/2746228