Prior-knowledge-independent equalization to improve battery uniformity with energy efficiency and time efficiency for lithium-ion battery
To improve battery uniformity as well as energy efficiency and time efficiency, a SOC (state of charge)-based equalization by AGA (adaptive genetic algorithm) is proposed on basis of two-stage DC/DC converters. The simulation results indicate that compared with FLC (fuzzy logic controller) equalizat...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2016-01, Vol.94, p.1-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To improve battery uniformity as well as energy efficiency and time efficiency, a SOC (state of charge)-based equalization by AGA (adaptive genetic algorithm) is proposed on basis of two-stage DC/DC converters. The simulation results indicate that compared with FLC (fuzzy logic controller) equalization, the standard deviation of final SOC is improved by 78.7% while energy efficiency is improved by 6.01% and equalization time is decreased by 20% for AGA equalization of extreme dispersion. Additionally, AGA improves the battery uniformity by 30.77% with shortening equalization time by 16.29% and saving energy loss by 1.51% compared with FLC for equalization of regular dispersion. For further validation, the equalization optimization is verified by experiment based on the data-driven parameter identification method which is used to enhance the real-time capability of AGA. For AGA equalization of extreme dispersion, the standard deviation of final SOC is just 0.41% while equalization time prolongs only 14 min and energy efficiency is decreased by 0.81% compared with simulation results. Moreover, not only the standard deviation of final SOC is just 0.28% but also the energy efficiency is decreased by 0.69% and equalization time prolongs by 10.4 min compared with the simulation results for equalization of regular dispersion.
•Issues of over equalization, time consumption and energy loss are addressed.•A SOC-based equalization is proposed based on adaptive genetic algorithm.•The equalization aims to improve battery uniformity, efficiency of energy and time.•Data-driven parameter identification is used to enhance the real-time capability. |
---|---|
ISSN: | 0360-5442 |
DOI: | 10.1016/j.energy.2015.11.004 |