Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation
A subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation is proposed and experimentally demonstrated in this paper. The grating interferometric cavity is composed of a frequency-stabilized laser source, a diffraction gra...
Gespeichert in:
Veröffentlicht in: | Applied Optics 2015-05, Vol.54 (13), p.4188-4196 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation is proposed and experimentally demonstrated in this paper. The grating interferometric cavity is composed of a frequency-stabilized laser source, a diffraction grating, and a mirror. To realize a subnanometer resolution, the intensity compensation and phase modulation technique are introduced, which are achieved by an intensity compensation light path, three closed placed photodetectors, a processing circuit and a piezoelectric ceramic transducer, and a lock-in amplifier. The intensity compensation technique can improve the stability of the output intensity signal greatly while the phase modulation technique can increase the signal-to-noise ratio dramatically. The detected signal is intensity modulated and processed by a particular arithmetic circuit. Experimental results indicate that the sensitivity of this displacement sensor is 44.75 mV/nm and the highest resolution can reach 0.017 nm, which is 27 times better than the one without intensity compensation and phase modulation. As a high-performance sensor with immunity to electromagnetic interference, this displacement sensor has potential to be used in nanoscience and technology. |
---|---|
ISSN: | 0003-6935 1559-128X 1539-4522 2155-3165 |
DOI: | 10.1364/AO.54.004188 |