Sparse Sums of Positive Semidefinite Matrices

Many fast graph algorithms begin by preprocessing the graph to improve its sparsity. A common form of this is spectral sparsification, which involves removing and reweighting the edges of the graph while approximately preserving its spectral properties. This task has a more general linear algebraic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on algorithms 2016-02, Vol.12 (1), p.1-17
Hauptverfasser: Silva, Marcel K. De Carli, Harvey, Nicholas J. A., Sato, Cristiane M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 1
container_start_page 1
container_title ACM transactions on algorithms
container_volume 12
creator Silva, Marcel K. De Carli
Harvey, Nicholas J. A.
Sato, Cristiane M.
description Many fast graph algorithms begin by preprocessing the graph to improve its sparsity. A common form of this is spectral sparsification, which involves removing and reweighting the edges of the graph while approximately preserving its spectral properties. This task has a more general linear algebraic formulation in terms of approximating sums of rank-one matrices. This article considers a more general task of approximating sums of symmetric, positive semidefinite matrices of arbitrary rank. We present two deterministic, polynomial time algorithms for solving this problem. The first algorithm applies the pessimistic estimators of Wigderson and Xiao, and the second involves an extension of the method of Batson, Spielman, and Srivastava. These algorithms have several applications, including sparsifiers of hypergraphs, sparse solutions to semidefinite programs, sparsifiers of unique games, and graph sparsifiers with various auxiliary constraints.
doi_str_mv 10.1145/2746241
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808118233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808118233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-720c4bd027593999501d324985e7f4f2a68b511e1a06b8969cd5e90e280cb5233</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhYMoOI7iX-hON9XcPNpkKYMvGFEYXYc0vYFIOx1zW8F_b2UGV-dw-DiLj7FL4DcASt-KWlVCwRFbgFa2rKSUx_9d6FN2RvTJubRSmgUrNzufCYvN1FMxxOJtoDSm73nAPrUY0zaNWLz4MaeAdM5Oou8ILw65ZB8P9--rp3L9-vi8uluXQWgzlrXgQTUtF7W20lqrObRSKGs01lFF4SvTaAAEz6vG2MqGVqPlKAwPjRZSLtn1_neXh68JaXR9ooBd57c4TOTAcANgZnJGr_ZoyANRxuh2OfU-_zjg7k-IOwiRv7b5T3U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808118233</pqid></control><display><type>article</type><title>Sparse Sums of Positive Semidefinite Matrices</title><source>ACM Digital Library Complete</source><creator>Silva, Marcel K. De Carli ; Harvey, Nicholas J. A. ; Sato, Cristiane M.</creator><creatorcontrib>Silva, Marcel K. De Carli ; Harvey, Nicholas J. A. ; Sato, Cristiane M.</creatorcontrib><description>Many fast graph algorithms begin by preprocessing the graph to improve its sparsity. A common form of this is spectral sparsification, which involves removing and reweighting the edges of the graph while approximately preserving its spectral properties. This task has a more general linear algebraic formulation in terms of approximating sums of rank-one matrices. This article considers a more general task of approximating sums of symmetric, positive semidefinite matrices of arbitrary rank. We present two deterministic, polynomial time algorithms for solving this problem. The first algorithm applies the pessimistic estimators of Wigderson and Xiao, and the second involves an extension of the method of Batson, Spielman, and Srivastava. These algorithms have several applications, including sparsifiers of hypergraphs, sparse solutions to semidefinite programs, sparsifiers of unique games, and graph sparsifiers with various auxiliary constraints.</description><identifier>ISSN: 1549-6325</identifier><identifier>EISSN: 1549-6333</identifier><identifier>DOI: 10.1145/2746241</identifier><language>eng</language><subject>Algorithms ; Approximation ; Games ; Graphs ; Preprocessing ; Spectra ; Sums ; Tasks</subject><ispartof>ACM transactions on algorithms, 2016-02, Vol.12 (1), p.1-17</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-720c4bd027593999501d324985e7f4f2a68b511e1a06b8969cd5e90e280cb5233</citedby><cites>FETCH-LOGICAL-c258t-720c4bd027593999501d324985e7f4f2a68b511e1a06b8969cd5e90e280cb5233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Silva, Marcel K. De Carli</creatorcontrib><creatorcontrib>Harvey, Nicholas J. A.</creatorcontrib><creatorcontrib>Sato, Cristiane M.</creatorcontrib><title>Sparse Sums of Positive Semidefinite Matrices</title><title>ACM transactions on algorithms</title><description>Many fast graph algorithms begin by preprocessing the graph to improve its sparsity. A common form of this is spectral sparsification, which involves removing and reweighting the edges of the graph while approximately preserving its spectral properties. This task has a more general linear algebraic formulation in terms of approximating sums of rank-one matrices. This article considers a more general task of approximating sums of symmetric, positive semidefinite matrices of arbitrary rank. We present two deterministic, polynomial time algorithms for solving this problem. The first algorithm applies the pessimistic estimators of Wigderson and Xiao, and the second involves an extension of the method of Batson, Spielman, and Srivastava. These algorithms have several applications, including sparsifiers of hypergraphs, sparse solutions to semidefinite programs, sparsifiers of unique games, and graph sparsifiers with various auxiliary constraints.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Games</subject><subject>Graphs</subject><subject>Preprocessing</subject><subject>Spectra</subject><subject>Sums</subject><subject>Tasks</subject><issn>1549-6325</issn><issn>1549-6333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAUhYMoOI7iX-hON9XcPNpkKYMvGFEYXYc0vYFIOx1zW8F_b2UGV-dw-DiLj7FL4DcASt-KWlVCwRFbgFa2rKSUx_9d6FN2RvTJubRSmgUrNzufCYvN1FMxxOJtoDSm73nAPrUY0zaNWLz4MaeAdM5Oou8ILw65ZB8P9--rp3L9-vi8uluXQWgzlrXgQTUtF7W20lqrObRSKGs01lFF4SvTaAAEz6vG2MqGVqPlKAwPjRZSLtn1_neXh68JaXR9ooBd57c4TOTAcANgZnJGr_ZoyANRxuh2OfU-_zjg7k-IOwiRv7b5T3U</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Silva, Marcel K. De Carli</creator><creator>Harvey, Nicholas J. A.</creator><creator>Sato, Cristiane M.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160201</creationdate><title>Sparse Sums of Positive Semidefinite Matrices</title><author>Silva, Marcel K. De Carli ; Harvey, Nicholas J. A. ; Sato, Cristiane M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-720c4bd027593999501d324985e7f4f2a68b511e1a06b8969cd5e90e280cb5233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Games</topic><topic>Graphs</topic><topic>Preprocessing</topic><topic>Spectra</topic><topic>Sums</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Marcel K. De Carli</creatorcontrib><creatorcontrib>Harvey, Nicholas J. A.</creatorcontrib><creatorcontrib>Sato, Cristiane M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM transactions on algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Marcel K. De Carli</au><au>Harvey, Nicholas J. A.</au><au>Sato, Cristiane M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse Sums of Positive Semidefinite Matrices</atitle><jtitle>ACM transactions on algorithms</jtitle><date>2016-02-01</date><risdate>2016</risdate><volume>12</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1549-6325</issn><eissn>1549-6333</eissn><abstract>Many fast graph algorithms begin by preprocessing the graph to improve its sparsity. A common form of this is spectral sparsification, which involves removing and reweighting the edges of the graph while approximately preserving its spectral properties. This task has a more general linear algebraic formulation in terms of approximating sums of rank-one matrices. This article considers a more general task of approximating sums of symmetric, positive semidefinite matrices of arbitrary rank. We present two deterministic, polynomial time algorithms for solving this problem. The first algorithm applies the pessimistic estimators of Wigderson and Xiao, and the second involves an extension of the method of Batson, Spielman, and Srivastava. These algorithms have several applications, including sparsifiers of hypergraphs, sparse solutions to semidefinite programs, sparsifiers of unique games, and graph sparsifiers with various auxiliary constraints.</abstract><doi>10.1145/2746241</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-6325
ispartof ACM transactions on algorithms, 2016-02, Vol.12 (1), p.1-17
issn 1549-6325
1549-6333
language eng
recordid cdi_proquest_miscellaneous_1808118233
source ACM Digital Library Complete
subjects Algorithms
Approximation
Games
Graphs
Preprocessing
Spectra
Sums
Tasks
title Sparse Sums of Positive Semidefinite Matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A49%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20Sums%20of%20Positive%20Semidefinite%20Matrices&rft.jtitle=ACM%20transactions%20on%20algorithms&rft.au=Silva,%20Marcel%20K.%20De%20Carli&rft.date=2016-02-01&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1549-6325&rft.eissn=1549-6333&rft_id=info:doi/10.1145/2746241&rft_dat=%3Cproquest_cross%3E1808118233%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808118233&rft_id=info:pmid/&rfr_iscdi=true