Sparse Sums of Positive Semidefinite Matrices
Many fast graph algorithms begin by preprocessing the graph to improve its sparsity. A common form of this is spectral sparsification, which involves removing and reweighting the edges of the graph while approximately preserving its spectral properties. This task has a more general linear algebraic...
Gespeichert in:
Veröffentlicht in: | ACM transactions on algorithms 2016-02, Vol.12 (1), p.1-17 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | ACM transactions on algorithms |
container_volume | 12 |
creator | Silva, Marcel K. De Carli Harvey, Nicholas J. A. Sato, Cristiane M. |
description | Many fast graph algorithms begin by preprocessing the graph to improve its sparsity. A common form of this is spectral sparsification, which involves removing and reweighting the edges of the graph while approximately preserving its spectral properties. This task has a more general linear algebraic formulation in terms of approximating sums of rank-one matrices. This article considers a more general task of approximating sums of symmetric, positive semidefinite matrices of arbitrary rank. We present two deterministic, polynomial time algorithms for solving this problem. The first algorithm applies the pessimistic estimators of Wigderson and Xiao, and the second involves an extension of the method of Batson, Spielman, and Srivastava. These algorithms have several applications, including sparsifiers of hypergraphs, sparse solutions to semidefinite programs, sparsifiers of unique games, and graph sparsifiers with various auxiliary constraints. |
doi_str_mv | 10.1145/2746241 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808118233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808118233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-720c4bd027593999501d324985e7f4f2a68b511e1a06b8969cd5e90e280cb5233</originalsourceid><addsrcrecordid>eNo9kEtLxDAUhYMoOI7iX-hON9XcPNpkKYMvGFEYXYc0vYFIOx1zW8F_b2UGV-dw-DiLj7FL4DcASt-KWlVCwRFbgFa2rKSUx_9d6FN2RvTJubRSmgUrNzufCYvN1FMxxOJtoDSm73nAPrUY0zaNWLz4MaeAdM5Oou8ILw65ZB8P9--rp3L9-vi8uluXQWgzlrXgQTUtF7W20lqrObRSKGs01lFF4SvTaAAEz6vG2MqGVqPlKAwPjRZSLtn1_neXh68JaXR9ooBd57c4TOTAcANgZnJGr_ZoyANRxuh2OfU-_zjg7k-IOwiRv7b5T3U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808118233</pqid></control><display><type>article</type><title>Sparse Sums of Positive Semidefinite Matrices</title><source>ACM Digital Library Complete</source><creator>Silva, Marcel K. De Carli ; Harvey, Nicholas J. A. ; Sato, Cristiane M.</creator><creatorcontrib>Silva, Marcel K. De Carli ; Harvey, Nicholas J. A. ; Sato, Cristiane M.</creatorcontrib><description>Many fast graph algorithms begin by preprocessing the graph to improve its sparsity. A common form of this is spectral sparsification, which involves removing and reweighting the edges of the graph while approximately preserving its spectral properties. This task has a more general linear algebraic formulation in terms of approximating sums of rank-one matrices. This article considers a more general task of approximating sums of symmetric, positive semidefinite matrices of arbitrary rank. We present two deterministic, polynomial time algorithms for solving this problem. The first algorithm applies the pessimistic estimators of Wigderson and Xiao, and the second involves an extension of the method of Batson, Spielman, and Srivastava. These algorithms have several applications, including sparsifiers of hypergraphs, sparse solutions to semidefinite programs, sparsifiers of unique games, and graph sparsifiers with various auxiliary constraints.</description><identifier>ISSN: 1549-6325</identifier><identifier>EISSN: 1549-6333</identifier><identifier>DOI: 10.1145/2746241</identifier><language>eng</language><subject>Algorithms ; Approximation ; Games ; Graphs ; Preprocessing ; Spectra ; Sums ; Tasks</subject><ispartof>ACM transactions on algorithms, 2016-02, Vol.12 (1), p.1-17</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-720c4bd027593999501d324985e7f4f2a68b511e1a06b8969cd5e90e280cb5233</citedby><cites>FETCH-LOGICAL-c258t-720c4bd027593999501d324985e7f4f2a68b511e1a06b8969cd5e90e280cb5233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Silva, Marcel K. De Carli</creatorcontrib><creatorcontrib>Harvey, Nicholas J. A.</creatorcontrib><creatorcontrib>Sato, Cristiane M.</creatorcontrib><title>Sparse Sums of Positive Semidefinite Matrices</title><title>ACM transactions on algorithms</title><description>Many fast graph algorithms begin by preprocessing the graph to improve its sparsity. A common form of this is spectral sparsification, which involves removing and reweighting the edges of the graph while approximately preserving its spectral properties. This task has a more general linear algebraic formulation in terms of approximating sums of rank-one matrices. This article considers a more general task of approximating sums of symmetric, positive semidefinite matrices of arbitrary rank. We present two deterministic, polynomial time algorithms for solving this problem. The first algorithm applies the pessimistic estimators of Wigderson and Xiao, and the second involves an extension of the method of Batson, Spielman, and Srivastava. These algorithms have several applications, including sparsifiers of hypergraphs, sparse solutions to semidefinite programs, sparsifiers of unique games, and graph sparsifiers with various auxiliary constraints.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Games</subject><subject>Graphs</subject><subject>Preprocessing</subject><subject>Spectra</subject><subject>Sums</subject><subject>Tasks</subject><issn>1549-6325</issn><issn>1549-6333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLxDAUhYMoOI7iX-hON9XcPNpkKYMvGFEYXYc0vYFIOx1zW8F_b2UGV-dw-DiLj7FL4DcASt-KWlVCwRFbgFa2rKSUx_9d6FN2RvTJubRSmgUrNzufCYvN1FMxxOJtoDSm73nAPrUY0zaNWLz4MaeAdM5Oou8ILw65ZB8P9--rp3L9-vi8uluXQWgzlrXgQTUtF7W20lqrObRSKGs01lFF4SvTaAAEz6vG2MqGVqPlKAwPjRZSLtn1_neXh68JaXR9ooBd57c4TOTAcANgZnJGr_ZoyANRxuh2OfU-_zjg7k-IOwiRv7b5T3U</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Silva, Marcel K. De Carli</creator><creator>Harvey, Nicholas J. A.</creator><creator>Sato, Cristiane M.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160201</creationdate><title>Sparse Sums of Positive Semidefinite Matrices</title><author>Silva, Marcel K. De Carli ; Harvey, Nicholas J. A. ; Sato, Cristiane M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-720c4bd027593999501d324985e7f4f2a68b511e1a06b8969cd5e90e280cb5233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Games</topic><topic>Graphs</topic><topic>Preprocessing</topic><topic>Spectra</topic><topic>Sums</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Marcel K. De Carli</creatorcontrib><creatorcontrib>Harvey, Nicholas J. A.</creatorcontrib><creatorcontrib>Sato, Cristiane M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM transactions on algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Marcel K. De Carli</au><au>Harvey, Nicholas J. A.</au><au>Sato, Cristiane M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse Sums of Positive Semidefinite Matrices</atitle><jtitle>ACM transactions on algorithms</jtitle><date>2016-02-01</date><risdate>2016</risdate><volume>12</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1549-6325</issn><eissn>1549-6333</eissn><abstract>Many fast graph algorithms begin by preprocessing the graph to improve its sparsity. A common form of this is spectral sparsification, which involves removing and reweighting the edges of the graph while approximately preserving its spectral properties. This task has a more general linear algebraic formulation in terms of approximating sums of rank-one matrices. This article considers a more general task of approximating sums of symmetric, positive semidefinite matrices of arbitrary rank. We present two deterministic, polynomial time algorithms for solving this problem. The first algorithm applies the pessimistic estimators of Wigderson and Xiao, and the second involves an extension of the method of Batson, Spielman, and Srivastava. These algorithms have several applications, including sparsifiers of hypergraphs, sparse solutions to semidefinite programs, sparsifiers of unique games, and graph sparsifiers with various auxiliary constraints.</abstract><doi>10.1145/2746241</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-6325 |
ispartof | ACM transactions on algorithms, 2016-02, Vol.12 (1), p.1-17 |
issn | 1549-6325 1549-6333 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808118233 |
source | ACM Digital Library Complete |
subjects | Algorithms Approximation Games Graphs Preprocessing Spectra Sums Tasks |
title | Sparse Sums of Positive Semidefinite Matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A49%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20Sums%20of%20Positive%20Semidefinite%20Matrices&rft.jtitle=ACM%20transactions%20on%20algorithms&rft.au=Silva,%20Marcel%20K.%20De%20Carli&rft.date=2016-02-01&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1549-6325&rft.eissn=1549-6333&rft_id=info:doi/10.1145/2746241&rft_dat=%3Cproquest_cross%3E1808118233%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808118233&rft_id=info:pmid/&rfr_iscdi=true |